IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2019i2p115-d241182.html
   My bibliography  Save this article

Development of an Industrial Environmental Index to Assess the Sustainability of Industrial Solvent-Based Processes

Author

Listed:
  • Chris Fadel

    (Elmir Brewing Company, Jdeideh El Metn 900073, Lebanon)

  • Khaled Tarabieh

    (Department of Architecture, American University in Cairo, New Cairo 11835, Egypt)

Abstract

In light of the constant increase in global temperatures, increasing risks associated with climate change, and stricter environmental policies, societies are at a crossroad where sound environmental decisions need to be taken. This is particularly applicable to the chemical industry where the sustainability of processes is all the more relevant to decision-making. This article supports the development of a holistic industrial environmental index (IEI) to assess the sustainability of industrial solvent-based processes. Several metrics are reviewed to individually assess particular aspects of the process in terms of materials, equipment, energy, environmental health and safety (EHS) considerations, and the product’s entire life cycle. The metrics are later used to support the development of an aggregate and holistic IEI using a composite indicator method. The developed methodology and framework can pave the way for environmentally sound decision-making in industries and spark the development of dedicated assessment indices similar to IEI that can be applied to a wide array of other industries.

Suggested Citation

  • Chris Fadel & Khaled Tarabieh, 2019. "Development of an Industrial Environmental Index to Assess the Sustainability of Industrial Solvent-Based Processes," Resources, MDPI, vol. 8(2), pages 1-13, June.
  • Handle: RePEc:gam:jresou:v:8:y:2019:i:2:p:115-:d:241182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/2/115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/2/115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Todd Sanford & Peter C. Frumhoff & Amy Luers & Jay Gulledge, 2014. "The climate policy narrative for a dangerously warming world," Nature Climate Change, Nature, vol. 4(3), pages 164-166, March.
    2. Wagner Cezar Lucato & José Carlos da Silva Santos & Athos Paulo Tadeu Pacchini, 2017. "Measuring the Sustainability of a Manufacturing Process: A Conceptual Framework," Sustainability, MDPI, vol. 10(1), pages 1-12, December.
    3. Evelyn C. Creencia & Joshua Andrew P. Nillama & Ivy L. Librando, 2018. "Microwave-Assisted Extraction and Physicochemical Evaluation of Oil from Hevea brasiliensis Seeds," Resources, MDPI, vol. 7(2), pages 1-12, April.
    4. Yunpeng Yang & Weixin Yang, 2019. "Does Whistleblowing Work for Air Pollution Control in China? A Study Based on Three-party Evolutionary Game Model under Incomplete Information," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Yu & Wei Wang & Baohua Yang & Cunfang Li, 2019. "Evolutionary Game Analysis of the Stress Effect of Cross-Regional Transfer of Resource-Exhausted Enterprises," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    2. Yang, Yunpeng & Yang, Weixin & Chen, Hongmin & Li, Yin, 2020. "China’s energy whistleblowing and energy supervision policy: An evolutionary game perspective," Energy, Elsevier, vol. 213(C).
    3. Jens Kiesel & Philipp Stanzel & Harald Kling & Nicola Fohrer & Sonja C. Jähnig & Ilias Pechlivanidis, 2020. "Streamflow-based evaluation of climate model sub-selection methods," Climatic Change, Springer, vol. 163(3), pages 1267-1285, December.
    4. Guanghui Yuan & Weixin Yang, 2019. "Evaluating China’s Air Pollution Control Policy with Extended AQI Indicator System: Example of the Beijing-Tianjin-Hebei Region," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    5. Haojie Liu & Jinyue Liu & Weixin Yang & Jianing Chen & Mingyang Zhu, 2020. "Analysis and Prediction of Land Use in Beijing-Tianjin-Hebei Region: A Study Based on the Improved Convolutional Neural Network Model," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    6. Maelaynayn El Baida & Mimoun Chourak & Farid Boushaba, 2025. "Flood Mitigation and Water Resource Preservation: Hydrodynamic and SWMM Simulations of nature-based Solutions under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1149-1176, February.
    7. Vladimir Markov & Vyacheslav Kamaltdinov & Sergey Devyanin & Bowen Sa & Anatoly Zherdev & Viktor Furman, 2021. "Investigation of the Influence of Different Vegetable Oils as a Component of Blended Biofuel on Performance and Emission Characteristics of a Diesel Engine for Agricultural Machinery and Commercial Ve," Resources, MDPI, vol. 10(8), pages 1-23, July.
    8. Ying Yan & Yuangang Li & Maohua Sun & Zhenhua Wu, 2019. "Primary Pollutants and Air Quality Analysis for Urban Air in China: Evidence from Shanghai," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    9. Fátima L. Vieira & Paulo A. Vieira & Denis A. Coelho, 2019. "A Data-Driven Approach to Development of a Taxonomy Framework for Triple Bottom Line Metrics," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    10. Alexandre André Feil & Dusan Schreiber & Claus Haetinger & Virgílio José Strasburg & Claudia Luisa Barkert, 2019. "Sustainability Indicators for Industrial Organizations: Systematic Review of Literature," Sustainability, MDPI, vol. 11(3), pages 1-15, February.
    11. Favi, Claudio & Marconi, Marco & Mandolini, Marco & Germani, Michele, 2022. "Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework," Applied Energy, Elsevier, vol. 312(C).
    12. Yaqiong Wang & Guanghui Yuan & Ying Yan & Xueliang Zhang, 2020. "Evaluation of Sustainable Urban Development under Environmental Constraints: A Case Study of Jiangsu Province, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    13. Yang, Weixin & Yang, Yunpeng & Chen, Hongmin, 2022. "How to stimulate Chinese energy companies to comply with emission regulations? Evidence from four-party evolutionary game analysis," Energy, Elsevier, vol. 258(C).
    14. Yuangang Li & Maohua Sun & Guanghui Yuan & Yujing Liu, 2019. "Evaluation Methods of Water Environment Safety and Their Application to the Three Northeast Provinces of China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    15. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2017. "Energy use implications of different design strategies for multi-storey residential buildings under future climates," Energy, Elsevier, vol. 138(C), pages 846-860.
    16. Xiaodan Wang & Zhengyu Yang, 2019. "Application of Fuzzy Optimization Model Based on Entropy Weight Method in Atmospheric Quality Evaluation: A Case Study of Zhejiang Province, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    17. Chantal Donnelly & Wouter Greuell & Jafet Andersson & Dieter Gerten & Giovanna Pisacane & Philippe Roudier & Fulco Ludwig, 2017. "Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level," Climatic Change, Springer, vol. 143(1), pages 13-26, July.
    18. Wenhui Zhao & Ruican Zou & Guanghui Yuan & Hui Wang & Zhongfu Tan, 2019. "Long-Term Cointegration Relationship between China’s Wind Power Development and Carbon Emissions," Sustainability, MDPI, vol. 11(17), pages 1-12, August.
    19. Li, Rui & Fang, Debin & Xu, Jiajun, 2025. "Does climate policy uncertainty (CPU) hinder carbon reduction? Evidence using the city-level CPU index in China," Energy Economics, Elsevier, vol. 141(C).
    20. Emily S Hope & Daniel W McKenney & John H Pedlar & Brian J Stocks & Sylvie Gauthier, 2016. "Wildfire Suppression Costs for Canada under a Changing Climate," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2019:i:2:p:115-:d:241182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.