IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i11p136-d1280040.html
   My bibliography  Save this article

Divergent Effects of Topography on Soil Properties and Above-Ground Biomass in Nepal’s Mid-Hill Forests

Author

Listed:
  • Sandhya Nepal

    (Institute of Forestry, Hetauda Campus, Tribhuvan University, Hetauda 44107, Nepal)

  • Mohan KC

    (School of Science and Environmental Research Institute, University of Waikato, Hamilton 3216, New Zealand)

  • Nabaraj Pudasaini

    (Ministry of Forests and Environment, Kathmandu 44600, Nepal)

  • Hari Adhikari

    (Earth Change Observation Laboratory, Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
    AFRY Management Consulting Oy, Jaakonkatu 3, 01620 Vantaa, Finland)

Abstract

Various factors, including topography, climate, soil attributes, and vegetation composition, influence above-ground biomass productivity in forest ecosystems. Despite the success of community forestry in restoring degraded hill forests in Nepal, existing research offers limited insights into how topographic factors and plant species affect soil chemical properties and, in turn, influence above-ground biomass. This study investigates the interrelations between altitude, aspect, soil depth, and vegetation type on soil organic carbon (SOC), total nitrogen (TN), available phosphorus (P), available potassium (K), and soil pH. These soil metrics are further correlated with forestry indices, such as diameter at breast height (DBH), tree height (Ht), above-ground tree biomass (AGTB), basal area (BA), and above-ground total carbon (AGTC), in the mid-hill region of central Nepal. Our findings indicate that aspect had a significant influence on SOC ( p < 0.001), TN ( p < 0.001), P ( p < 0.05), and pH ( p < 0.001) levels. Soils in the northwest (NW) aspect exhibited higher levels of SOC and TN but lower levels of P and pH than those in the southeast (SE) aspect. Altitude did not significantly affect soil properties. Variations in SOC, TN, K, and pH were observed across different soil depths. Key forestry metrics like DBH, Ht, AGTB, and AGTC were notably higher at elevated altitudes and under the NW aspect. We also found that vegetation composition adds a layer of complexity to the relationship between aspect, soil properties, and above-ground biomass. The higher altitudes in the SE aspect are more conducive to above-ground biomass productivity, while the NW aspect is favorable for higher levels of SOC and TN in the soil. These variations could be due to differences in carbon deposition rates, plant compositions, soil microbial activities, and microclimatic conditions between the aspects. These findings highlight the need for holistic forest management approaches that consider topographic factors, soil depth, and plant species, offering practical implications for the region’s sustainable forest management and restoration efforts.

Suggested Citation

  • Sandhya Nepal & Mohan KC & Nabaraj Pudasaini & Hari Adhikari, 2023. "Divergent Effects of Topography on Soil Properties and Above-Ground Biomass in Nepal’s Mid-Hill Forests," Resources, MDPI, vol. 12(11), pages 1-16, November.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:11:p:136-:d:1280040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/11/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/11/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sébastien Fontaine & Sébastien Barot & Pierre Barré & Nadia Bdioui & Bruno Mary & Cornelia Rumpel, 2007. "Stability of organic carbon in deep soil layers controlled by fresh carbon supply," Nature, Nature, vol. 450(7167), pages 277-280, November.
    2. Sumeet Gairola & C. M. Sharma & S. K. Ghildiyal & Sarvesh Suyal, 2012. "Chemical properties of soils in relation to forest composition in moist temperate valley slopes of Garhwal Himalaya, India," Environment Systems and Decisions, Springer, vol. 32(4), pages 512-523, December.
    3. Xia, Y.Q. & Shao, M.A., 2008. "Soil water carrying capacity for vegetation: A hydrologic and biogeochemical process model solution," Ecological Modelling, Elsevier, vol. 214(2), pages 112-124.
    4. George W. Koch & Stephen C. Sillett & Gregory M. Jennings & Stephen D. Davis, 2004. "The limits to tree height," Nature, Nature, vol. 428(6985), pages 851-854, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virna Estefania Moran-Rodas & Verena Preusse & Christine Wachendorf, 2022. "Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    2. Yu Zhang & Wei Li & Shaodan Li & Baoni Xie & Fangzhong Shi & Jianxia Zhao, 2022. "Spatial Distribution of Optimal Plant Cover and Its Influencing Factors for Populus simonii Carr. on the Bashang Plateau, China," Land, MDPI, vol. 11(6), pages 1-15, June.
    3. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Tong-Hui Wu & Yu-Fu Hu & Yan-Yan Zhang & Xiang-Yang Shu & Ze-Peng Yang & Wei Zhou & Cheng-Yi Huang & Jie Li & Zhi Li & Jia He & Ying Yu, 2022. "Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 211-221.
    5. Hong Chen & Haiyang Wang & Yanfang Liu & Li Dong, 2013. "Altitudinal Variations of Ground Tissue and Xylem Tissue in Terminal Shoot of Woody Species: Implications for Treeline Formation," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    6. Gao, Lei & Shao, Mingan, 2012. "Temporal stability of shallow soil water content for three adjacent transects on a hillslope," Agricultural Water Management, Elsevier, vol. 110(C), pages 41-54.
    7. Aneta Kowalska & Marek Kucbel & Anna Grobelak, 2021. "Potential and Mechanisms for Stable C Storage in the Post-Mining Soils under Long-Term Study in Mitigation of Climate Change," Energies, MDPI, vol. 14(22), pages 1-15, November.
    8. Fernández, J.E. & Rodriguez-Dominguez, C.M. & Perez-Martin, A. & Zimmermann, U. & Rüger, S. & Martín-Palomo, M.J. & Torres-Ruiz, J.M. & Cuevas, M.V. & Sann, C. & Ehrenberger, W. & Diaz-Espejo, A., 2011. "Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 100(1), pages 25-35.
    9. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Jingjing Jia & Zhiguo Zhang & Zhijuan Tai & Ming Yang & Yuxin Luo & Zhuo Yang & Yumei Zhou, 2023. "Construction and Demolition Waste as Substrate Component Improved the Growth of Container-Grown Duranta repens," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    11. Soni Bisht & Surendra Singh Bargali & Kiran Bargali & Gopal Singh Rawat & Yashwant Singh Rawat & Archana Fartyal, 2022. "Influence of Anthropogenic Activities on Forest Carbon Stocks—A Case Study from Gori Valley, Western Himalaya," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    12. Surabhi Hota & Vidyanand Mishra & Krishna Kumar Mourya & Krishna Giri & Dinesh Kumar & Prakash Kumar Jha & Uday Shankar Saikia & P. V. Vara Prasad & Sanjay Kumar Ray, 2022. "Land Use, Landform, and Soil Management as Determinants of Soil Physicochemical Properties and Microbial Abundance of Lower Brahmaputra Valley, India," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    13. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Matheus Henrique Nunes & Marcel Caritá Vaz & José Luís Campana Camargo & William F. Laurance & Ana Andrade & Alberto Vicentini & Susan Laurance & Pasi Raumonen & Toby Jackson & Gabriela Zuquim & Jin W, 2023. "Edge effects on tree architecture exacerbate biomass loss of fragmented Amazonian forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Liu, Bingxia & Shao, Ming’an, 2015. "Modeling soil–water dynamics and soil–water carrying capacity for vegetation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 176-184.
    16. Mendup Tamang & Roman Chettri & Vineeta & Gopal Shukla & Jahangeer A. Bhat & Amit Kumar & Munesh Kumar & Arpit Suryawanshi & Marina Cabral-Pinto & Sumit Chakravarty, 2021. "Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas," Land, MDPI, vol. 10(4), pages 1-15, April.
    17. Jesús Aguilera-Huertas & Luis Parras-Alcántara & Manuel González-Rosado & Beatriz Lozano-García, 2022. "What Influence Does Conventional Tillage Have on the Ability of Soils to Sequester Carbon, Stabilise It and Become Saturated in the Medium Term? A Case Study in a Traditional Rainfed Olive Grove," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    18. Dongli She & Dongdong Liu & Yongqiu Xia & Ming’an Shao, 2014. "Modeling Effects of Land use and Vegetation Density on Soil Water Dynamics: Implications on Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2063-2076, May.
    19. Turner, Benjamin L. & Kodali, Srinadh, 2020. "Soil system dynamics for learning about complex, feedback-driven agricultural resource problems: model development, evaluation, and sensitivity analysis of biophysical feedbacks," Ecological Modelling, Elsevier, vol. 428(C).
    20. Kaitaniemi, Pekka & Lintunen, Anna & Sievänen, Risto, 2020. "Power-law estimation of branch growth," Ecological Modelling, Elsevier, vol. 416(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:11:p:136-:d:1280040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.