IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i4p419-d502974.html
   My bibliography  Save this article

Analysis of a Batch Arrival, Batch Service Queuing-Inventory System with Processing of Inventory While on Vacation

Author

Listed:
  • Achyutha Krishnamoorthy

    (Centre for Research in Mathematics, C.M.S. College, Kottayam 686001, India)

  • Anu Nuthan Joshua

    (Department of Mathematics, Union Christian College, Aluva 683102, India
    Working for Doctoral Degree at Department of Mathematics, Cochin University of Science and Technology, Cochin-22.)

  • Dmitry Kozyrev

    (Applied Probability and Informatics Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198 Moscow, Russia
    V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 65 Profsoyuznaya Street, 117997 Moscow, Russia)

Abstract

A single-server queuing-inventory system in which arrivals are governed by a batch Markovian arrival process and successive arrival batch sizes form a finite first-order Markov chain is considered in this paper. Service is provided in batches according to a batch Markovian service process, with consecutive service batch sizes forming a finite first-order Markov chain. A service starts for the next batch on completion of the current service, provided that inventory is available at that epoch; otherwise, there will be a delay in starting the next service. When the service of a batch is completed, the inventory decreases by 1 unit, irrespective of batch size. A control policy in which the server goes on vacation when a service process is frozen until a quorum can initiate the next batch service is proposed to ensure idle-time utilization. During the vacation, the server produces inventory (items) for future services until it hits a specified level L or until the number of customers in the system reaches a maximum service batch size N , with whichever occurring first. In the former case, a server stays idle once the processed inventory level reaches L until the number of customers reaches (or even exceeds because of batch arrival) a maximum service batch size N . The time required for processing one unit of inventory follows a phase-type distribution. In this paper, the steady-state probability vector of this infinite system is computed. The distributions of inventory processing time in a vacation cycle, idle time in a vacation cycle, and vacation cycle length are found. The effect of correlation in successive inter-arrival times and service times on performance measures for such a queuing system is illustrated with a numerical example. An optimization problem is considered. The proposed system is then compared with a queuing-inventory system without the Markov-dependent assumption on successive arrivals as well as service batch sizes using numerical examples.

Suggested Citation

  • Achyutha Krishnamoorthy & Anu Nuthan Joshua & Dmitry Kozyrev, 2021. "Analysis of a Batch Arrival, Batch Service Queuing-Inventory System with Processing of Inventory While on Vacation," Mathematics, MDPI, vol. 9(4), pages 1-29, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:419-:d:502974
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/4/419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/4/419/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yonatan Levy & Uri Yechiali, 1975. "Utilization of Idle Time in an M/G/1 Queueing System," Management Science, INFORMS, vol. 22(2), pages 202-211, October.
    2. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4, December.
    3. S. R. Chakravarthy & Arunava Maity & U. C. Gupta, 2017. "An ‘(s, S)’ inventory in a queueing system with batch service facility," Annals of Operations Research, Springer, vol. 258(2), pages 263-283, November.
    4. Naishuo Tian & Zhe George Zhang, 2006. "Applications of Vacation Models," International Series in Operations Research & Management Science, in: Vacation Queueing Models Theory and Applications, chapter 0, pages 343-358, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kousik Das & Sujit Kumar Samanta, 2023. "Computational analysis of $$GI^{[X]}/D$$ G I [ X ] / D - $$MSP^{(a,b)}/1$$ M S P ( a , b ) / 1 queueing system via RG-factorization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 1-39, August.
    2. Sujit Kumar Samanta & Kousik Das, 2023. "Detailed Analytical and Computational Studies of D-BMAP/D-BMSP/1 Queueing System," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-37, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    2. M. I. G. Suranga Sampath & K. Kalidass & Jicheng Liu, 2020. "Transient Analysis of an M/M/1 Queueing System Subjected to Multiple Differentiated Vacations, Impatient Customers and a Waiting Server with Application to IEEE 802.16E Power Saving Mechanism," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 297-320, March.
    3. Janani, B., 2022. "Transient Analysis of Differentiated Breakdown Model," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    4. G. K. Tamrakar & A. Banerjee, 2020. "On steady-state joint distribution of an infinite buffer batch service Poisson queue with single and multiple vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1337-1373, December.
    5. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    6. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    7. Houyuan Jiang & Zhan Pang & Sergei Savin, 2012. "Performance-Based Contracts for Outpatient Medical Services," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 654-669, October.
    8. Shan Gao & Zaiming Liu & Qiwen Du, 2014. "Discrete-Time Gix/Geo/1/N Queue With Working Vacations And Vacation Interruption," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(01), pages 1-22.
    9. Yi Peng & Jinbiao Wu, 2020. "A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations," Mathematics, MDPI, vol. 8(8), pages 1-12, July.
    10. Pengfei Guo & Zhe George Zhang, 2013. "Strategic Queueing Behavior and Its Impact on System Performance in Service Systems with the Congestion-Based Staffing Policy," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 118-131, September.
    11. Srinivas R. Chakravarthy & Serife Ozkar, 2016. "Crowdsourcing and Stochastic Modeling," Business and Management Research, Business and Management Research, Sciedu Press, vol. 5(2), pages 19-30, June.
    12. Zsolt Saffer & Sergey Andreev & Yevgeni Koucheryavy, 2016. "$$M/D^{[y]}/1$$ M / D [ y ] / 1 Periodically gated vacation model and its application to IEEE 802.16 network," Annals of Operations Research, Springer, vol. 239(2), pages 497-520, April.
    13. A. D. Banik & M. L. Chaudhry, 2017. "Efficient Computational Analysis of Stationary Probabilities for the Queueing System BMAP / G /1/ N With or Without Vacation(s)," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 140-151, February.
    14. Shunfu Jin & Xiuchen Qie & Wenjuan Zhao & Wuyi Yue & Yutaka Takahashi, 2020. "A clustered virtual machine allocation strategy based on a sleep-mode with wake-up threshold in a cloud environment," Annals of Operations Research, Springer, vol. 293(1), pages 193-212, October.
    15. Xu Jia & Liu Liwei & Zhu Taozeng, 2018. "Transient Analysis of a Two-Heterogeneous Severs Queue with Impatient Behaviour and Multiple Vacations," Journal of Systems Science and Information, De Gruyter, vol. 6(1), pages 69-84, February.
    16. Amina Angelika Bouchentouf & Abdelhak Guendouzi, 2021. "Single Server Batch Arrival Bernoulli Feedback Queueing System with Waiting Server, K-Variant Vacations and Impatient Customers," SN Operations Research Forum, Springer, vol. 2(1), pages 1-23, March.
    17. Luis Zabala & Josu Doncel & Armando Ferro, 2023. "Modeling a Linux Packet-Capturing System with a Queueing System with Vacations," Mathematics, MDPI, vol. 11(7), pages 1-27, March.
    18. F. P. Barbhuiya & U. C. Gupta, 2020. "A Discrete-Time GIX/Geo/1 Queue with Multiple Working Vacations Under Late and Early Arrival System," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 599-624, June.
    19. Alexander Dudin & Sergei Dudin & Valentina Klimenok & Yuliya Gaidamaka, 2021. "Vacation Queueing Model for Performance Evaluation of Multiple Access Information Transmission Systems without Transmission Interruption," Mathematics, MDPI, vol. 9(13), pages 1-15, June.
    20. Chakravarthy, Srinivas R. & Shruti, & Kulshrestha, Rakhee, 2020. "A queueing model with server breakdowns, repairs, vacations, and backup server," Operations Research Perspectives, Elsevier, vol. 7(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:419-:d:502974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.