IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i24p3229-d702005.html
   My bibliography  Save this article

Controlling Stochastic Sensitivity by Feedback Regulators in Nonlinear Dynamical Systems with Incomplete Information

Author

Listed:
  • Irina Bashkirtseva

    (Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia)

Abstract

The problem of synthesis of stochastic sensitivity for equilibrium modes in nonlinear randomly forced dynamical systems with incomplete information is considered. We construct a feedback regulator that uses noisy data on some system state coordinates. For parameters of the regulator providing assigned stochastic sensitivity, a quadratic matrix equation is derived. Attainability of the assigned stochastic sensitivity is reduced to the solvability of this equation. We suggest a constructive algorithm for solving this quadratic matrix equation. These general theoretical results are used to solve the problem of stabilizing equilibrium modes of nonlinear stochastic oscillators under conditions of incomplete information. Details of our approach are illustrated on the example of a van der Pol oscillator.

Suggested Citation

  • Irina Bashkirtseva, 2021. "Controlling Stochastic Sensitivity by Feedback Regulators in Nonlinear Dynamical Systems with Incomplete Information," Mathematics, MDPI, vol. 9(24), pages 1-12, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3229-:d:702005
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/24/3229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/24/3229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Chaoqun & Yuan, Sanling & Zhang, Tonghua, 2018. "Sensitivity analysis and feedback control of noise-induced extinction for competition chemostat model with mutualism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 891-902.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashkirtseva, I. & Ryashko, L., 2019. "Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 78-84.
    2. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Yu Mu & Zuxiong Li & Huili Xiang & Hailing Wang, 2019. "Dynamical Analysis of a Stochastic Multispecies Turbidostat Model," Complexity, Hindawi, vol. 2019, pages 1-18, January.
    4. Gao, Miaomiao & Jiang, Daqing & Ding, Jieyu, 2024. "Dynamics of a chemostat model with Ornstein–Uhlenbeck process and general response function," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    5. Liu, Rong & Ma, Wanbiao, 2021. "Noise-induced stochastic transition: A stochastic chemostat model with two complementary nutrients and flocculation effect," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    6. Mandal, Sayan & Sk, Nazmul & Tiwari, Pankaj Kumar & Chattopadhyay, Joydev, 2024. "Bistability in modified Holling II response model with harvesting and Allee effect: Exploring transitions in a noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    7. Liu, Guodong & Meng, Xinzhu, 2019. "Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Chen, Jianxin & Zhang, Tonghua & Zhou, Yong-wu, 2021. "Stochastic sensitivity and dynamical complexity of newsvendor models subject to trade credit," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 471-486.
    9. Xu, Chaoqun, 2020. "Probabilistic mechanisms of the noise-induced oscillatory transitions in a Leslie type predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    10. Mengnan Chi & Wencai Zhao, 2019. "Dynamical Analysis of Two-Microorganism and Single Nutrient Stochastic Chemostat Model with Monod-Haldane Response Function," Complexity, Hindawi, vol. 2019, pages 1-13, March.
    11. Lev Ryashko & Irina Bashkirtseva, 2022. "Stochastic Bifurcations and Excitement in the ZS-Model of a Thermochemical Reaction," Mathematics, MDPI, vol. 10(6), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3229-:d:702005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.