IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2723-d665901.html
   My bibliography  Save this article

Heavy-Traffic Comparison of a Discrete-Time Generalized Processor Sharing Queue and a Pure Randomly Alternating Service Queue

Author

Listed:
  • Arnaud Devos

    (SMACS Research Group, Department of Telecommunications and Information Processing (TELIN), Ghent University (UGENT), Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium)

  • Joris Walraevens

    (SMACS Research Group, Department of Telecommunications and Information Processing (TELIN), Ghent University (UGENT), Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium)

  • Dieter Fiems

    (SMACS Research Group, Department of Telecommunications and Information Processing (TELIN), Ghent University (UGENT), Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium)

  • Herwig Bruneel

    (SMACS Research Group, Department of Telecommunications and Information Processing (TELIN), Ghent University (UGENT), Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium)

Abstract

This paper compares two discrete-time single-server queueing models with two queues. In both models, the server is available to a queue with probability 1/2 at each service opportunity. Since obtaining easy-to-evaluate expressions for the joint moments is not feasible, we rely on a heavy-traffic limit approach. The correlation coefficient of the queue-contents is computed via the solution of a two-dimensional functional equation obtained by reducing it to a boundary value problem on a hyperbola. In most server-sharing models, it is assumed that the system is work-conserving in the sense that if one of the queues is empty, a customer of the other queue is served with probability 1. In our second model, we omit this work-conserving rule such that the server can be idle in case of a non-empty queue. Contrary to what we would expect, the resulting heavy-traffic approximations reveal that both models remain different for critically loaded queues.

Suggested Citation

  • Arnaud Devos & Joris Walraevens & Dieter Fiems & Herwig Bruneel, 2021. "Heavy-Traffic Comparison of a Discrete-Time Generalized Processor Sharing Queue and a Pure Randomly Alternating Service Queue," Mathematics, MDPI, vol. 9(21), pages 1-25, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2723-:d:665901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nimrod Dvir & Refael Hassin & Uri Yechiali, 2020. "Strategic behaviour in a tandem queue with alternating server," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 205-244, December.
    2. Arnaud Devos & Joris Walraevens & Dieter Fiems & Herwig Bruneel, 2020. "Analysis of a discrete-time two-class randomly alternating service model with Bernoulli arrivals," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 133-152, October.
    3. Jan-Kees Ommeren & Ahmad Al Hanbali & Richard J. Boucherie, 2020. "Analysis of polling models with a self-ruling server," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 77-107, February.
    4. Jasper Vanlerberghe & Tom Maertens & Joris Walraevens & Stijn Vuyst & Herwig Bruneel, 2016. "On the optimization of two-class work-conserving parameterized scheduling policies," 4OR, Springer, vol. 14(3), pages 281-308, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Dudin & Sergei Dudin & Olga Dudina, 2023. "Analysis of a Queueing System with Mixed Service Discipline," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Vishnevsky & Olga Semenova, 2021. "Polling Systems and Their Application to Telecommunication Networks," Mathematics, MDPI, vol. 9(2), pages 1-30, January.
    2. Arnaud Devos & Joris Walraevens & Dieter Fiems & Herwig Bruneel, 2022. "Approximations for the performance evaluation of a discrete-time two-class queue with an alternating service discipline," Annals of Operations Research, Springer, vol. 310(2), pages 477-503, March.
    3. Arnaud Devos & Joris Walraevens & Dieter Fiems & Herwig Bruneel, 2020. "Analysis of a discrete-time two-class randomly alternating service model with Bernoulli arrivals," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 133-152, October.
    4. Hanukov, Gabi, 2022. "Improving efficiency of service systems by performing a part of the service without the customer's presence," European Journal of Operational Research, Elsevier, vol. 302(2), pages 606-620.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2723-:d:665901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.