IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2446-d648571.html
   My bibliography  Save this article

Global Stabilization of a Single-Species Ecosystem with Markovian Jumping under Neumann Boundary Value via Laplacian Semigroup

Author

Listed:
  • Ruofeng Rao

    (Department of Mathematics, Chengdu Normal University, Chengdu 611130, China)

  • Jialin Huang

    (Department of Mathematics, Sichuan Sanhe Vocational College, Luzhou 646200, China)

  • Xinsong Yang

    (College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China)

Abstract

By applying impulsive control, this work investigated the global stabilization of a single-species ecosystem with Markovian jumping, a time delay and a Neumann boundary condition. Variational methods, a fixed-point theorem, and Laplacian semigroup theory were employed to derive the unique existence of the global stable equilibrium point, which is a positive number. Numerical examples illuminate the feasibility of the proposed methods.

Suggested Citation

  • Ruofeng Rao & Jialin Huang & Xinsong Yang, 2021. "Global Stabilization of a Single-Species Ecosystem with Markovian Jumping under Neumann Boundary Value via Laplacian Semigroup," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2446-:d:648571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rao, Ruofeng & Yang, Xinsong & Tang, Rongqiang & Zhang, Yulin & Li, Xinggui & Shi, Lei, 2021. "Impulsive stabilization and stability analysis for Gilpin–Ayala competition model involved in harmful species via LMI approach and variational methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 571-590.
    2. Feng, Yuming & Yang, Xinsong & Song, Qiang & Cao, Jinde, 2018. "Synchronization of memristive neural networks with mixed delays via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 874-887.
    3. Ruofeng Rao & Quanxin Zhu & Jialin Huang & Eulalia Mart nez, 2021. "Existence, Uniqueness, and Input-to-State Stability of Ground State Stationary Strong Solution of a Single-Species Model via Mountain Pass Lemma," Complexity, Hindawi, vol. 2021, pages 1-11, April.
    4. Ji, Weiming & Hu, Guixin, 2021. "Stability and explicit stationary density of a stochastic single-species model," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalid A. Alattas & Ardashir Mohammadzadeh & Saleh Mobayen & Hala M. Abo-Dief & Abdullah K. Alanazi & Mai The Vu & Arthur Chang, 2022. "Automatic Control for Time Delay Markov Jump Systems under Polytopic Uncertainties," Mathematics, MDPI, vol. 10(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Yaxian & Bin, Honghua & Huang, Zhenkun, 2019. "Synchronization of state-switching hopfield-type neural networks: A quantized level set approach," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 16-24.
    2. Yan, Lisha & Wang, Zhen & Zhang, Mingguang & Fan, Yingjie, 2023. "Sampled-data control for mean-square exponential stabilization of memristive neural networks under deception attacks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Zhou, Ya & Wan, Xiaoxiao & Huang, Chuangxia & Yang, Xinsong, 2020. "Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    4. Li, Zhao-Yan & Shang, Shengnan & Lam, James, 2019. "On stability of neutral-type linear stochastic time-delay systems with three different delays," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 147-166.
    5. Zhang, Shuai & Yang, Yongqing & Sui, Xin & Xu, Xianyu, 2019. "Finite-time synchronization of memristive neural networks with parameter uncertainties via aperiodically intermittent adjustment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    6. Chen, Yuan & Wu, Jianwei & Bao, Haibo, 2022. "Finite-time stabilization for delayed quaternion-valued coupled neural networks with saturated impulse," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    7. Ruofeng Rao, 2021. "Global Stability of Delayed Ecosystem via Impulsive Differential Inequality and Minimax Principle," Mathematics, MDPI, vol. 9(16), pages 1-11, August.
    8. Liu, Jin & Jian, Jigui & Wang, Baoxian, 2020. "Stability analysis for BAM quaternion-valued inertial neural networks with time delay via nonlinear measure approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 134-152.
    9. Wang, Shengbo & Cao, Yanyi & Huang, Tingwen & Wen, Shiping, 2019. "Passivity and passification of memristive neural networks with leakage term and time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 294-310.
    10. Rao, Ruofeng & Yang, Xinsong & Tang, Rongqiang & Zhang, Yulin & Li, Xinggui & Shi, Lei, 2021. "Impulsive stabilization and stability analysis for Gilpin–Ayala competition model involved in harmful species via LMI approach and variational methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 571-590.
    11. Tai, Weipeng & Teng, Qingyong & Zhou, Youmei & Zhou, Jianping & Wang, Zhen, 2019. "Chaos synchronization of stochastic reaction-diffusion time-delay neural networks via non-fragile output-feedback control," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 115-127.
    12. Zhou, Chao & Wang, Chunhua & Yao, Wei & Lin, Hairong, 2022. "Observer-based synchronization of memristive neural networks under DoS attacks and actuator saturation and its application to image encryption," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    13. Wang, Zhaojuan & Liu, Meng, 2023. "Periodic measure of a stochastic single-species model in periodic environments," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Keke Wu & Babatunde Oluwaseun Onasanya & Longzhou Cao & Yuming Feng, 2023. "Impulsive Control of Some Types of Nonlinear Systems Using a Set of Uncertain Control Matrices," Mathematics, MDPI, vol. 11(2), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2446-:d:648571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.