IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1405-d576538.html
   My bibliography  Save this article

Edge Metric and Fault-Tolerant Edge Metric Dimension of Hollow Coronoid

Author

Listed:
  • Ali N. A. Koam

    (Department of Mathematics, College of Science, Jazan University, New Campus, Jazan 45142, Saudi Arabia)

  • Ali Ahmad

    (College of Computer Science and Information Technology, Jazan University, Jazan 45142, Saudi Arabia)

  • Muhammad Ibrahim

    (Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Multan 60800, Pakistan)

  • Muhammad Azeem

    (Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia)

Abstract

Geometric arrangements of hexagons into six sides of benzenoids are known as coronoid systems. They are organic chemical structures by definition. Hollow coronoids are divided into two types: primitive and catacondensed coronoids. Polycyclic conjugated hydrocarbon is another name for them. Chemical mathematics piques the curiosity of scientists from a variety of disciplines. Graph theory has always played an important role in making chemical structures intelligible and useful. After converting a chemical structure into a graph, many theoretical and investigative studies on structures can be carried out. Among the different parameters of graph theory, the dimension of edge metric is the most recent, unique, and important parameter. Few proposed vertices are picked in this notion, such as all graph edges have unique locations or identifications. Different (edge) metric-based concept for the structure of hollow coronoid were discussed in this study.

Suggested Citation

  • Ali N. A. Koam & Ali Ahmad & Muhammad Ibrahim & Muhammad Azeem, 2021. "Edge Metric and Fault-Tolerant Edge Metric Dimension of Hollow Coronoid," Mathematics, MDPI, vol. 9(12), pages 1-14, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1405-:d:576538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. András Sebő & Eric Tannier, 2004. "On Metric Generators of Graphs," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 383-393, May.
    2. Yuezhong Zhang & Suogang Gao, 2020. "On the edge metric dimension of convex polytopes and its related graphs," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 334-350, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sedlar, Jelena & Škrekovski, Riste, 2021. "Bounds on metric dimensions of graphs with edge disjoint cycles," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    2. Knor, Martin & Majstorović, Snježana & Masa Toshi, Aoden Teo & Škrekovski, Riste & Yero, Ismael G., 2021. "Graphs with the edge metric dimension smaller than the metric dimension," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    3. Sedlar, Jelena & Škrekovski, Riste, 2021. "Extremal mixed metric dimension with respect to the cyclomatic number," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    4. Michael Hallaway & Cong X. Kang & Eunjeong Yi, 2014. "On metric dimension of permutation graphs," Journal of Combinatorial Optimization, Springer, vol. 28(4), pages 814-826, November.
    5. Ismael González Yero, 2020. "The Simultaneous Strong Resolving Graph and the Simultaneous Strong Metric Dimension of Graph Families," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    6. González, Antonio & Hernando, Carmen & Mora, Mercè, 2018. "Metric-locating-dominating sets of graphs for constructing related subsets of vertices," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 449-456.
    7. Hassan Raza, 2021. "Computing Open Locating-Dominating Number of Some Rotationally-Symmetric Graphs," Mathematics, MDPI, vol. 9(12), pages 1-12, June.
    8. Mladenović, Nenad & Kratica, Jozef & Kovačević-Vujčić, Vera & Čangalović, Mirjana, 2012. "Variable neighborhood search for metric dimension and minimal doubly resolving set problems," European Journal of Operational Research, Elsevier, vol. 220(2), pages 328-337.
    9. Nie, Kairui & Xu, Kexiang, 2023. "Mixed metric dimension of some graphs," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    10. Sakander Hayat & Asad Khan & Yubin Zhong, 2022. "On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    11. Martin Knor & Jelena Sedlar & Riste Škrekovski, 2022. "Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    12. Juan Wang & Lianying Miao & Yunlong Liu, 2019. "Characterization of n -Vertex Graphs of Metric Dimension n − 3 by Metric Matrix," Mathematics, MDPI, vol. 7(5), pages 1-13, May.
    13. Yero, Ismael G. & Estrada-Moreno, Alejandro & Rodríguez-Velázquez, Juan A., 2017. "Computing the k-metric dimension of graphs," Applied Mathematics and Computation, Elsevier, vol. 300(C), pages 60-69.
    14. Sunny Kumar Sharma & Vijay Kumar Bhat, 2022. "On metric dimension of plane graphs with $$\frac{m}{2}$$ m 2 number of 10 sided faces," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1433-1458, October.
    15. Jun Guo & Kaishun Wang & Fenggao Li, 2013. "Metric dimension of some distance-regular graphs," Journal of Combinatorial Optimization, Springer, vol. 26(1), pages 190-197, July.
    16. Muhammad Azeem & Muhammad Kamran Jamil & Yilun Shang, 2023. "Notes on the Localization of Generalized Hexagonal Cellular Networks," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    17. Enqiang Zhu & Shaoxiang Peng & Chanjuan Liu, 2022. "Identifying the Exact Value of the Metric Dimension and Edge Dimension of Unicyclic Graphs," Mathematics, MDPI, vol. 10(19), pages 1-14, September.
    18. Ron Adar & Leah Epstein, 2017. "The k-metric dimension," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 1-30, July.
    19. Iztok Peterin & Gabriel Semanišin, 2021. "On the Maximal Shortest Paths Cover Number," Mathematics, MDPI, vol. 9(14), pages 1-10, July.
    20. Yuezhong Zhang & Suogang Gao, 2020. "On the edge metric dimension of convex polytopes and its related graphs," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 334-350, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1405-:d:576538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.