IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1374-d399830.html
   My bibliography  Save this article

Uncertainty Quantification through Dropout in Time Series Prediction by Echo State Networks

Author

Listed:
  • Miguel Atencia

    (Department of Applied Mathematics, Universidad de Málaga, 29071-Málaga, Spain)

  • Ruxandra Stoean

    (Romanian Institute of Science and Technology, 400022-Cluj-Napoca, Romania)

  • Gonzalo Joya

    (Department of Electronics Technology, Universidad de Málaga, 29071-Málaga, Spain)

Abstract

The application of echo state networks to time series prediction has provided notable results, favored by their reduced computational cost, since the connection weights require no learning. However, there is a need for general methods that guide the choice of parameters (particularly the reservoir size and ridge regression coefficient), improve the prediction accuracy, and provide an assessment of the uncertainty of the estimates. In this paper we propose such a mechanism for uncertainty quantification based on Monte Carlo dropout, where the output of a subset of reservoir units is zeroed before the computation of the output. Dropout is only performed at the test stage, since the immediate goal is only the computation of a measure of the goodness of the prediction. Results show that the proposal is a promising method for uncertainty quantification, providing a value that is either strongly correlated with the prediction error or reflects the prediction of qualitative features of the time series. This mechanism could eventually be included into the learning algorithm in order to obtain performance enhancements and alleviate the burden of parameter choice.

Suggested Citation

  • Miguel Atencia & Ruxandra Stoean & Gonzalo Joya, 2020. "Uncertainty Quantification through Dropout in Time Series Prediction by Echo State Networks," Mathematics, MDPI, vol. 8(8), pages 1-13, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1374-:d:399830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick L. McDermott & Christopher K. Wikle, 2019. "Deep echo state networks with uncertainty quantification for spatio‐temporal forecasting," Environmetrics, John Wiley & Sons, Ltd., vol. 30(3), May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe Tagle & Marc G. Genton & Andrew Yip & Suleiman Mostamandi & Georgiy Stenchikov & Stefano Castruccio, 2020. "A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    2. Matthew Bonas & Christopher K. Wikle & Stefano Castruccio, 2024. "Calibrated forecasts of quasi‐periodic climate processes with deep echo state networks and penalized quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    3. Huang Huang & Stefano Castruccio & Marc G. Genton, 2022. "Forecasting high‐frequency spatio‐temporal wind power with dimensionally reduced echo state networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 449-466, March.
    4. Marwah Soliman & Vyacheslav Lyubchich & Yulia R. Gel, 2020. "Ensemble forecasting of the Zika space‐time spread with topological data analysis," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    5. Nadja Klein & Michael Stanley Smith & David J. Nott, 2020. "Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices," Papers 2010.01844, arXiv.org, revised May 2021.
    6. Yu-Ting Bai & Wei Jia & Xue-Bo Jin & Ting-Li Su & Jian-Lei Kong & Zhi-Gang Shi, 2023. "Nonstationary Time Series Prediction Based on Deep Echo State Network Tuned by Bayesian Optimization," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
    7. Gabriel Trierweiler Ribeiro & João Guilherme Sauer & Naylene Fraccanabbia & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Bayesian Optimized Echo State Network Applied to Short-Term Load Forecasting," Energies, MDPI, vol. 13(9), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1374-:d:399830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.