IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i7p1093-d380238.html
   My bibliography  Save this article

Fractional Integral Equations Tell Us How to Impose Initial Values in Fractional Differential Equations

Author

Listed:
  • Daniel Cao Labora

    (Department of Applied Mathematics I, School of Forest Engineering, Universidade de Vigo, Campus Universitario da Xunqueira, S/N, 36005 Pontevedra, Spain)

Abstract

One major question in Fractional Calculus is to better understand the role of the initial values in fractional differential equations. In this sense, there is no consensus about what is the reasonable fractional abstraction of the idea of “initial value problem”. This work provides an answer to this question. The techniques that are used involve known results concerning Volterra integral equations, and the spaces of summable fractional differentiability introduced by Samko et al. In a few words, we study the natural consequences in fractional differential equations of the already existing results involving existence and uniqueness for their integral analogues, in terms of the Riemann–Liouville fractional integral. In particular, we show that a fractional differential equation of a certain order with Riemann–Liouville derivatives demands, in principle, less initial values than the ceiling of the order to have a uniquely determined solution, in contrast to a widely extended opinion. We compute explicitly the amount of necessary initial values and the orders of differentiability where these conditions need to be imposed.

Suggested Citation

  • Daniel Cao Labora, 2020. "Fractional Integral Equations Tell Us How to Impose Initial Values in Fractional Differential Equations," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1093-:d:380238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/7/1093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/7/1093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rudolf Hilfer & Yuri Luchko, 2019. "Desiderata for Fractional Derivatives and Integrals," Mathematics, MDPI, vol. 7(2), pages 1-5, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
    2. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    4. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    5. Christopher Nicholas Angstmann & Byron Alexander Jacobs & Bruce Ian Henry & Zhuang Xu, 2020. "Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    6. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    7. Vasily E. Tarasov & Svetlana S. Tarasova, 2020. "Fractional Derivatives and Integrals: What Are They Needed For?," Mathematics, MDPI, vol. 8(2), pages 1-22, January.
    8. Vasily E. Tarasov, 2020. "Non-Linear Macroeconomic Models of Growth with Memory," Mathematics, MDPI, vol. 8(11), pages 1-22, November.
    9. Isah, Sunday Simon & Fernandez, Arran & Özarslan, Mehmet Ali, 2023. "On bivariate fractional calculus with general univariate analytic kernels," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1093-:d:380238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.