IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i6p522-d237869.html
   My bibliography  Save this article

Approximation of Fixed Points for Suzuki’s Generalized Non-Expansive Mappings

Author

Listed:
  • Javid Ali

    (Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India)

  • Faeem Ali

    (Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India)

  • Puneet Kumar

    (Department of Mathematics and Statistics, Fiji National University, P.O. Box 3722, Samabula, Fiji)

Abstract

In this paper, we study a three step iterative scheme to approximate fixed points of Suzuki’s generalized non-expansive mappings. We establish some weak and strong convergence results for such mappings in uniformly convex Banach spaces. Further, we show numerically that the considered iterative scheme converges faster than some other known iterations for Suzuki’s generalized non-expansive mappings. To support our claim, we give an illustrative numerical example and approximate fixed points of such mappings using Matlab program. Our results are new and generalize several relevant results in the literature.

Suggested Citation

  • Javid Ali & Faeem Ali & Puneet Kumar, 2019. "Approximation of Fixed Points for Suzuki’s Generalized Non-Expansive Mappings," Mathematics, MDPI, vol. 7(6), pages 1-11, June.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:6:p:522-:d:237869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/6/522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/6/522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. E. Rhoades, 1991. "Some fixed point iteration procedures," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 14, pages 1-16, January.
    2. Wissam Kassab & Teodor Ţurcanu, 2019. "Numerical Reckoning Fixed Points of ( ρE )-Type Mappings in Modular Vector Spaces," Mathematics, MDPI, vol. 7(5), pages 1-13, April.
    3. M. De la Sen & Mujahid Abbas, 2019. "On Best Proximity Results for a Generalized Modified Ishikawa’s Iterative Scheme Driven by Perturbed 2-Cyclic Like-Contractive Self-Maps in Uniformly Convex Banach Spaces," Journal of Mathematics, Hindawi, vol. 2019, pages 1-15, January.
    4. Thakur, Balwant Singh & Thakur, Dipti & Postolache, Mihai, 2016. "A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 147-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryam Gharamah Alshehri & Faizan Ahmad Khan & Faeem Ali, 2022. "An Iterative Algorithm to Approximate Fixed Points of Non-Linear Operators with an Application," Mathematics, MDPI, vol. 10(7), pages 1-16, April.
    2. Konrawut Khammahawong & Parin Chaipunya & Kamonrat Sombut, 2022. "Approximating Common Fixed Points of Nonexpansive Mappings on Hadamard Manifolds with Applications," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    3. Ismat Beg & Mujahid Abbas & Muhammad Waseem Asghar, 2022. "Convergence of AA-Iterative Algorithm for Generalized α -Nonexpansive Mappings with an Application," Mathematics, MDPI, vol. 10(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maryam Gharamah Alshehri & Faizan Ahmad Khan & Faeem Ali, 2022. "An Iterative Algorithm to Approximate Fixed Points of Non-Linear Operators with an Application," Mathematics, MDPI, vol. 10(7), pages 1-16, April.
    2. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    3. Hasanen A. Hammad & Habib ur Rehman & Manuel De la Sen, 2022. "A New Four-Step Iterative Procedure for Approximating Fixed Points with Application to 2D Volterra Integral Equations," Mathematics, MDPI, vol. 10(22), pages 1-26, November.
    4. Bing Tan & Shanshan Xu & Songxiao Li, 2020. "Modified Inertial Hybrid and Shrinking Projection Algorithms for Solving Fixed Point Problems," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    5. Chanchal Garodia & Afrah A. N. Abdou & Izhar Uddin, 2021. "A New Modified Fixed-Point Iteration Process," Mathematics, MDPI, vol. 9(23), pages 1-10, December.
    6. Gdawiec, Krzysztof & Kotarski, Wiesław, 2017. "Polynomiography for the polynomial infinity norm via Kalantari’s formula and nonstandard iterations," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 17-30.
    7. Yuanheng Wang & Mingyue Yuan & Bingnan Jiang, 2021. "Multi-Step Inertial Hybrid and Shrinking Tseng’s Algorithm with Meir–Keeler Contractions for Variational Inclusion Problems," Mathematics, MDPI, vol. 9(13), pages 1-13, July.
    8. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "An Iterative Algorithm for Solving Generalized Variational Inequalities and Fixed Points Problems," Mathematics, MDPI, vol. 7(1), pages 1-15, January.
    9. Andreea Bejenaru & Mihai Postolache, 2022. "New Approach to Split Variational Inclusion Issues through a Three-Step Iterative Process," Mathematics, MDPI, vol. 10(19), pages 1-16, October.
    10. Austine Efut Ofem & Jacob Ashiwere Abuchu & Reny George & Godwin Chidi Ugwunnadi & Ojen Kumar Narain, 2022. "Some New Results on Convergence, Weak w 2 -Stability and Data Dependence of Two Multivalued Almost Contractive Mappings in Hyperbolic Spaces," Mathematics, MDPI, vol. 10(20), pages 1-26, October.
    11. Mujahid Abbas & Muhammad Waseem Asghar & Manuel De la Sen, 2022. "Approximation of the Solution of Delay Fractional Differential Equation Using AA -Iterative Scheme," Mathematics, MDPI, vol. 10(2), pages 1-20, January.
    12. Usurelu, Gabriela Ioana & Turcanu, Teodor, 2021. "Best proximity points of (EP)-operators with qualitative analysis and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 215-230.
    13. Konrawut Khammahawong & Parin Chaipunya & Kamonrat Sombut, 2022. "Approximating Common Fixed Points of Nonexpansive Mappings on Hadamard Manifolds with Applications," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    14. Ali Abkar & Mohsen Shekarbaigi, 2017. "A Novel Iterative Algorithm Applied to Totally Asymptotically Nonexpansive Mappings in CAT(0) Spaces," Mathematics, MDPI, vol. 5(1), pages 1-13, February.
    15. Alexander J. Zaslavski, 2023. "Approximate Solutions of a Fixed-Point Problem with an Algorithm Based on Unions of Nonexpansive Mappings," Mathematics, MDPI, vol. 11(6), pages 1-7, March.
    16. Wissam Kassab & Teodor Ţurcanu, 2019. "Numerical Reckoning Fixed Points of ( ρE )-Type Mappings in Modular Vector Spaces," Mathematics, MDPI, vol. 7(5), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:6:p:522-:d:237869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.