IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i21p4080-d960907.html
   My bibliography  Save this article

Approximating Common Fixed Points of Nonexpansive Mappings on Hadamard Manifolds with Applications

Author

Listed:
  • Konrawut Khammahawong

    (Applied Mathematics for Science and Engineering Research Unit (AMSERU), Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand)

  • Parin Chaipunya

    (NCAO Research Center, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand)

  • Kamonrat Sombut

    (Applied Mathematics for Science and Engineering Research Unit (AMSERU), Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand)

Abstract

The point of this research is to present a new iterative procedure for approximating common fixed points of nonexpansive mappings in Hadamard manifolds. The convergence theorem of the proposed method is discussed under certain conditions. For the sake of clarity, we provide some numerical examples to support our results. Furthermore, we apply the suggested approach to solve inclusion problems and convex feasibility problems.

Suggested Citation

  • Konrawut Khammahawong & Parin Chaipunya & Kamonrat Sombut, 2022. "Approximating Common Fixed Points of Nonexpansive Mappings on Hadamard Manifolds with Applications," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4080-:d:960907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/21/4080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/21/4080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    2. Anantachai Padcharoen & Pakeeta Sukprasert, 2019. "Nonlinear Operators as Concerns Convex Programming and Applied to Signal Processing," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    3. O. Ferreira & L. Pérez & S. Németh, 2005. "Singularities of Monotone Vector Fields and an Extragradient-type Algorithm," Journal of Global Optimization, Springer, vol. 31(1), pages 133-151, January.
    4. Thakur, Balwant Singh & Thakur, Dipti & Postolache, Mihai, 2016. "A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 147-155.
    5. Javid Ali & Faeem Ali & Puneet Kumar, 2019. "Approximation of Fixed Points for Suzuki’s Generalized Non-Expansive Mappings," Mathematics, MDPI, vol. 7(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maryam Gharamah Alshehri & Faizan Ahmad Khan & Faeem Ali, 2022. "An Iterative Algorithm to Approximate Fixed Points of Non-Linear Operators with an Application," Mathematics, MDPI, vol. 10(7), pages 1-16, April.
    2. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    3. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    4. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    5. J. H. Wang & G. López & V. Martín-Márquez & C. Li, 2010. "Monotone and Accretive Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 691-708, September.
    6. J. H. Wang, 2011. "Convergence of Newton’s Method for Sections on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 125-145, January.
    7. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    8. Hasanen A. Hammad & Habib ur Rehman & Manuel De la Sen, 2022. "A New Four-Step Iterative Procedure for Approximating Fixed Points with Application to 2D Volterra Integral Equations," Mathematics, MDPI, vol. 10(22), pages 1-26, November.
    9. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    10. G. C. Bento & J. X. Cruz Neto & P. A. Soares & A. Soubeyran, 2022. "A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires," Annals of Operations Research, Springer, vol. 316(2), pages 1301-1318, September.
    11. Chanchal Garodia & Afrah A. N. Abdou & Izhar Uddin, 2021. "A New Modified Fixed-Point Iteration Process," Mathematics, MDPI, vol. 9(23), pages 1-10, December.
    12. Li-Wen Zhou & Nan-Jing Huang, 2013. "Existence of Solutions for Vector Optimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 44-53, April.
    13. Javid Ali & Faeem Ali & Puneet Kumar, 2019. "Approximation of Fixed Points for Suzuki’s Generalized Non-Expansive Mappings," Mathematics, MDPI, vol. 7(6), pages 1-11, June.
    14. Gdawiec, Krzysztof & Kotarski, Wiesław, 2017. "Polynomiography for the polynomial infinity norm via Kalantari’s formula and nonstandard iterations," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 17-30.
    15. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    16. Yuanheng Wang & Mingyue Yuan & Bingnan Jiang, 2021. "Multi-Step Inertial Hybrid and Shrinking Tseng’s Algorithm with Meir–Keeler Contractions for Variational Inclusion Problems," Mathematics, MDPI, vol. 9(13), pages 1-13, July.
    17. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "An Iterative Algorithm for Solving Generalized Variational Inequalities and Fixed Points Problems," Mathematics, MDPI, vol. 7(1), pages 1-15, January.
    18. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    19. Jin-Hua Wang & Jen-Chih Yao & Chong Li, 2012. "Gauss–Newton method for convex composite optimizations on Riemannian manifolds," Journal of Global Optimization, Springer, vol. 53(1), pages 5-28, May.
    20. Xiangmei Wang & Chong Li & Jen-Chih Yao, 2016. "On Some Basic Results Related to Affine Functions on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 783-803, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4080-:d:960907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.