IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i10p877-d269349.html
   My bibliography  Save this article

A New Nine-Dimensional Chaotic Lorenz System with Quaternion Variables: Complicated Dynamics, Electronic Circuit Design, Anti-Anticipating Synchronization, and Chaotic Masking Communication Application

Author

Listed:
  • Emad E. Mahmoud

    (Department of Mathematics, Faculty of Science, Taif University, Taif 888, Saudi Arabia
    Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt)

  • M. Higazy

    (Department of Mathematics, Faculty of Science, Taif University, Taif 888, Saudi Arabia
    Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt)

  • Turkiah M. Al-Harthi

    (Department of Mathematics, Shaqra University, Shaqra 11921, Saudi Arabia)

Abstract

In this paper, a chaotic quaternion autonomous nonlinear structure is introduced and intends to be a contribution. It is the first nonlinear dynamical system with quaternion variables to be studied in the literature. With nine dimensions, the new system is a high-dimensional one. Several vital characteristics and features of this model are investigated, such as its Hamiltonian, symmetry, signal flow graph, dissipation, equilibriums and their stability, Lyapunov exponents, Lyapunov dimension, bifurcation diagrams, and chaotic behavior. A circuit implementation is designed to realize the new system, and a scheme is designed to achieve anti-anticipating synchronization (AAS) of two identical chaotic attractors with quaternion variables based on a Lyapunov function and active control. The concept of AAS is yet to be explored in the literature. A simulation experiment is designed and executed to illustrate the effectiveness of the acquired results. After synchronization, numerical outcomes are planned to explain the status variables and errors of these chaotic attractors to prove that AAS is achieved. The secure communication problem is studied based on the obtained events of the AAS of two identical nonlinear Lorenz systems with quaternion variables. AAS connecting the drive and response systems in chaotic systems with quaternion variables is the key to achieving communication. Signal encryption and restoration are simulated numerically.

Suggested Citation

  • Emad E. Mahmoud & M. Higazy & Turkiah M. Al-Harthi, 2019. "A New Nine-Dimensional Chaotic Lorenz System with Quaternion Variables: Complicated Dynamics, Electronic Circuit Design, Anti-Anticipating Synchronization, and Chaotic Masking Communication Applicatio," Mathematics, MDPI, vol. 7(10), pages 1-26, September.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:877-:d:269349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/10/877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/10/877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fen, Mehmet Onur, 2017. "Persistence of chaos in coupled Lorenz systems," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 200-205.
    2. Tingwen Huang & David Gao & Chuandong Li & MingQing Xiao, 2012. "Anticipating synchronization through optimal feedback control," Journal of Global Optimization, Springer, vol. 52(2), pages 281-290, February.
    3. Mahmoud, Emad E., 2013. "Modified projective phase synchronization of chaotic complex nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 69-85.
    4. Pavlos, G.P. & Karakatsanis, L.P. & Xenakis, M.N., 2012. "Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma, Part one: Sunspot dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6287-6319.
    5. Song, Guang-Jing & Wang, Qing-Wen & Yu, Shao-Wen, 2018. "Cramer’s rule for a system of quaternion matrix equations with applications," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 490-499.
    6. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    7. Huang, Chengdai & Cao, Jinde, 2017. "Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 262-275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu, Jinlong & Wu, Baowei & Xiong, Lianglin, 2022. "Stochastic stability criteria and event-triggered control of delayed Markovian jump quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    2. Luigi Fortuna & Arturo Buscarino, 2022. "Analog Circuits," Mathematics, MDPI, vol. 10(24), pages 1-4, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangfang Zhang & Rui Gao & Zhe Huang & Cuimei Jiang & Yawen Chen & Haibo Zhang, 2022. "Complex Modified Projective Difference Function Synchronization of Coupled Complex Chaotic Systems for Secure Communication in WSNs," Mathematics, MDPI, vol. 10(7), pages 1-14, April.
    2. Mahmoud, Gamal M. & Mahmoud, Emad E. & Arafa, Ayman A., 2018. "Synchronization of time delay systems with non-diagonal complex scaling functions," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 86-95.
    3. Zuoxun Wang & Wenzhu Zhang & Lei Ma & Guijuan Wang, 2022. "Several Control Problems of a Class of Complex Nonlinear Systems Based on UDE," Mathematics, MDPI, vol. 10(8), pages 1-15, April.
    4. Mahmoud, Emad E. & AL-Harthi, Bushra H., 2020. "A hyperchaotic detuned laser model with an infinite number of equilibria existing on a plane and its modified complex phase synchronization with time lag," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    6. Wang, Fei & Zheng, Zhaowen, 2019. "Quasi-projective synchronization of fractional order chaotic systems under input saturation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Wang, Huanan & Huang, Chengdai & Liu, Heng & Cao, Jinde, 2023. "Detecting bifurcations in a fractional-order neural network with nonidentical delays via Cramer’s rule," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Cuimei Jiang & Shutang Liu, 2017. "Synchronization and Antisynchronization of -Coupled Complex Permanent Magnet Synchronous Motor Systems with Ring Connection," Complexity, Hindawi, vol. 2017, pages 1-15, January.
    9. Wang, Aijuan & Liao, Xiaofeng & Dong, Tao, 2018. "Finite-time event-triggered synchronization for reaction–diffusion complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 111-120.
    10. Xuan-Bing Yang & Yi-Gang He & Chun-Lai Li, 2018. "Dynamics Feature and Synchronization of a Robust Fractional-Order Chaotic System," Complexity, Hindawi, vol. 2018, pages 1-12, December.
    11. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    12. Hao, Zhang & Xing-yuan, Wang & Peng-fei, Yan & Yu-jie, Sun, 2020. "Combination synchronization and stability analysis of time-varying complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    13. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    14. Wang, Fei & Yang, Yongqing, 2018. "Intermittent synchronization of fractional order coupled nonlinear systems based on a new differential inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 142-152.
    15. Chu, Yu-Ming & Bekiros, Stelios & Zambrano-Serrano, Ernesto & Orozco-López, Onofre & Lahmiri, Salim & Jahanshahi, Hadi & Aly, Ayman A., 2021. "Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Pavlos, G.P. & Iliopoulos, A.C. & Zastenker, G.N. & Zelenyi, L.M. & Karakatsanis, L.P. & Riazantseva, M.O. & Xenakis, M.N. & Pavlos, E.G., 2015. "Tsallis non-extensive statistics and solar wind plasma complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 113-135.
    17. Li, Xuechen & Wang, Nan & Lu, Jianquan & Alsaadi, Fuad E., 2019. "Pinning outer synchronization of partially coupled dynamical networks with complex inner coupling matrices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 497-509.
    18. Pavlos, G.P. & Karakatsanis, L.P. & Iliopoulos, A.C. & Pavlos, E.G. & Xenakis, M.N. & Clark, Peter & Duke, Jamie & Monos, D.S., 2015. "Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 188-209.
    19. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong, 2019. "Chaotic analysis and adaptive synchronization for a class of fractional order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 33-42.
    20. Liang Chen & Chengdai Huang & Haidong Liu & Yonghui Xia, 2019. "Anti-Synchronization of a Class of Chaotic Systems with Application to Lorenz System: A Unified Analysis of the Integer Order and Fractional Order," Mathematics, MDPI, vol. 7(6), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:877-:d:269349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.