IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v4y2016i2p33-d69717.html
   My bibliography  Save this article

Chaos Control in Three Dimensional Cancer Model by State Space Exact Linearization Based on Lie Algebra

Author

Listed:
  • Mohammad Shahzad

    (Nizwa College of Applied Sciences, Ministry of Higher Education, Nizwa 611, Oman)

Abstract

This study deals with the control of chaotic dynamics of tumor cells, healthy host cells, and effector immune cells in a chaotic Three Dimensional Cancer Model (TDCM) by State Space Exact Linearization (SSEL) technique based on Lie algebra. A non-linear feedback control law is designed which induces a coordinate transformation thereby changing the original chaotic TDCM system into a controlled one linear system. Numerical simulation has been carried using Mathematica that witness the robustness of the technique implemented on the chosen chaotic system.

Suggested Citation

  • Mohammad Shahzad, 2016. "Chaos Control in Three Dimensional Cancer Model by State Space Exact Linearization Based on Lie Algebra," Mathematics, MDPI, vol. 4(2), pages 1-11, May.
  • Handle: RePEc:gam:jmathe:v:4:y:2016:i:2:p:33-:d:69717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/4/2/33/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/4/2/33/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. El-Gohary, Awad & Alwasel, I.A., 2009. "The chaos and optimal control of cancer model with complete unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2865-2874.
    2. El-Gohary, Awad, 2008. "Chaos and optimal control of cancer self-remission and tumor system steady states," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1305-1316.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Parthasakha & Das, Samhita & Upadhyay, Ranjit Kumar & Das, Pritha, 2020. "Optimal treatment strategies for delayed cancer-immune system with multiple therapeutic approach," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Mohammadi, Shaban & Hejazi, S. Reza, 2023. "Using particle swarm optimization and genetic algorithms for optimal control of non-linear fractional-order chaotic system of cancer cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 538-560.
    3. El-Gohary, Awad, 2009. "Chaos and optimal control of equilibrium states of tumor system with drug," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 425-435.
    4. Llanos-Pérez, J.A. & Betancourt-Mar, J.A. & Cocho, G. & Mansilla, R. & Nieto-Villar, José Manuel, 2016. "Phase transitions in tumor growth: III vascular and metastasis behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 560-568.
    5. Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
    6. Pham, Tuan D., 2014. "The butterfly effect in ER dynamics and ER-mitochondrial contacts," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 5-19.
    7. Dehingia, Kaushik & Das, Parthasakha & Upadhyay, Ranjit Kumar & Misra, Arvind Kumar & Rihan, Fathalla A. & Hosseini, Kamyar, 2023. "Modelling and analysis of delayed tumour–immune system with hunting T-cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 669-684.
    8. El-Gohary, Awad & Alwasel, I.A., 2009. "The chaos and optimal control of cancer model with complete unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2865-2874.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:4:y:2016:i:2:p:33-:d:69717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.