IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i8p1307-d1636135.html
   My bibliography  Save this article

Bifurcation Analysis of a Class of Food Chain Model with Two Time Delays

Author

Listed:
  • Xiuling Li

    (College of Applied Mathematics, Jilin University of Finance and Economics, Changchun 130117, China)

  • Siyu Dong

    (College of Applied Mathematics, Jilin University of Finance and Economics, Changchun 130117, China)

  • Haotian Fan

    (College of Applied Mathematics, Jilin University of Finance and Economics, Changchun 130117, China)

Abstract

This paper investigates the Hopf bifurcation of a three-dimensional food chain model with two timedelays, focusing on the synergistic effect of time delays in energy transfer between different trophic levels on the stability of the system. By analyzing the distribution of the roots of the characteristic equation, the stability conditions of the internal equilibrium point and the criterion for the existence of the Hopf bifurcation are established. Using the paradigm theory and the central manifold theorem, explicit formulas for determining the bifurcation direction and the stability of the bifurcation periodic solution are obtained. Numerical simulations verify the theoretical results. This study shows that increasing the time delay will lead to the instability of the food chain model through Hopf bifurcation and produce limit cycle oscillations. This work simulates the asymmetric propagation mode of population fluctuations observed in natural ecosystems, providing a theoretical basis for analyzing the coevolution of complex food webs.

Suggested Citation

  • Xiuling Li & Siyu Dong & Haotian Fan, 2025. "Bifurcation Analysis of a Class of Food Chain Model with Two Time Delays," Mathematics, MDPI, vol. 13(8), pages 1-26, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1307-:d:1636135
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/8/1307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/8/1307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Das, Meghadri & Samanta, G.P., 2020. "A delayed fractional order food chain model with fear effect and prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 218-245.
    2. Xiuling Li & Haotian Fan, 2024. "Bifurcation Analysis of a Class of Two-Delay Lotka–Volterra Predation Models with Coefficient-Dependent Delay," Mathematics, MDPI, vol. 12(10), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Zhou & Zhuang Cui & Ruimei Li, 2024. "Complex Dynamics and PID Control Strategies for a Fractional Three-Population Model," Mathematics, MDPI, vol. 12(23), pages 1-22, November.
    2. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2022. "A Fractional Order Model to Study the Effectiveness of Government Measures and Public Behaviours in COVID-19 Pandemic," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
    3. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2021. "Stability Analysis and Optimal Control of a Fractional Order Synthetic Drugs Transmission Model," Mathematics, MDPI, vol. 9(7), pages 1-34, March.
    4. Maria Francesca Carfora & Isabella Torcicollo, 2020. "Cross-Diffusion-Driven Instability in a Predator-Prey System with Fear and Group Defense," Mathematics, MDPI, vol. 8(8), pages 1-20, July.
    5. Pandey, Soumik & Ghosh, Uttam & Das, Debashis & Chakraborty, Sarbani & Sarkar, Abhijit, 2024. "Rich dynamics of a delay-induced stage-structure prey–predator model with cooperative behaviour in both species and the impact of prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 49-76.
    6. Das, Bijoy Kumar & Sahoo, Debgopal & Samanta, G.P., 2022. "Impact of fear in a delay-induced predator–prey system with intraspecific competition within predator species," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 134-156.
    7. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Three-dimensional pattern dynamics of a fractional predator-prey model with cross-diffusion and herd behavior," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    8. Zhang, Hai & Cheng, Yuhong & Zhang, Weiwei & Zhang, Hongmei, 2023. "Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 846-857.
    9. Li, Ning & Yan, Mengting, 2022. "Bifurcation control of a delayed fractional-order prey-predator model with cannibalism and disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    10. Cuimin Liu & Yonggang Chen & Yingbin Yu & Zhen Wang, 2023. "Bifurcation and Stability Analysis of a New Fractional-Order Prey–Predator Model with Fear Effects in Toxic Injections," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    11. Zhang, Hai & Cheng, Jingshun & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2021. "Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays★," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1307-:d:1636135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.