IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i8p1276-d1633602.html
   My bibliography  Save this article

Neuronal Mesh Reconstruction from Image Stacks Using Implicit Neural Representations

Author

Listed:
  • Xiaoqiang Zhu

    (School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China)

  • Yanhua Zhao

    (School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China)

  • Lihua You

    (National Center for Computer Animation, Bournemouth University, Poole BH12 5BB, UK)

Abstract

Reconstructing neuronal morphology from microscopy image stacks is essential for understanding brain function and behavior. While existing methods are capable of tracking neuronal tree structures and creating membrane surface meshes, they often lack seamless processing pipelines and suffer from stitching artifacts and reconstruction inconsistencies. In this study, we propose a new approach utilizing implicit neural representation to directly extract neuronal isosurfaces from raw image stacks by modeling signed distance functions (SDFs) with multi-layer perceptrons (MLPs). Our method accurately reconstructs the tubular, tree-like topology of neurons in complex spatial configurations, yielding highly precise neuronal membrane surface meshes. Extensive quantitative and qualitative evaluations across multiple datasets demonstrate the superior reliability of our approach compared to existing methods. The proposed method achieves a volumetric reconstruction accuracy of up to 98.2% and a volumetric IoU of 0.90.

Suggested Citation

  • Xiaoqiang Zhu & Yanhua Zhao & Lihua You, 2025. "Neuronal Mesh Reconstruction from Image Stacks Using Implicit Neural Representations," Mathematics, MDPI, vol. 13(8), pages 1-19, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1276-:d:1633602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/8/1276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/8/1276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alfredo Rodriguez & Douglas B Ehlenberger & Dara L Dickstein & Patrick R Hof & Susan L Wearne, 2008. "Automated Three-Dimensional Detection and Shape Classification of Dendritic Spines from Fluorescence Microscopy Images," PLOS ONE, Public Library of Science, vol. 3(4), pages 1-12, April.
    2. Hanchuan Peng & Peng Xie & Lijuan Liu & Xiuli Kuang & Yimin Wang & Lei Qu & Hui Gong & Shengdian Jiang & Anan Li & Zongcai Ruan & Liya Ding & Zizhen Yao & Chao Chen & Mengya Chen & Tanya L. Daigle & R, 2021. "Morphological diversity of single neurons in molecularly defined cell types," Nature, Nature, vol. 598(7879), pages 174-181, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yufeng Liu & Shengdian Jiang & Yingxin Li & Sujun Zhao & Zhixi Yun & Zuo-Han Zhao & Lingli Zhang & Gaoyu Wang & Xin Chen & Linus Manubens-Gil & Yuning Hang & Qiaobo Gong & Yuanyuan Li & Penghao Qian &, 2024. "Neuronal diversity and stereotypy at multiple scales through whole brain morphometry," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Karim G Habashy & Benjamin D Evans & Dan F M Goodman & Jeffrey S Bowers, 2024. "Adapting to time: Why nature may have evolved a diverse set of neurons," PLOS Computational Biology, Public Library of Science, vol. 20(12), pages 1-19, December.
    3. Yash Patel & Jean Shin & Eeva Sliz & Ariana Tang & Aniket Mishra & Rui Xia & Edith Hofer & Hema Sekhar Reddy Rajula & Ruiqi Wang & Frauke Beyer & Katrin Horn & Max Riedl & Jing Yu & Henry Völzke & Rob, 2024. "Genetic risk factors underlying white matter hyperintensities and cortical atrophy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Marcus N. Leiwe & Satoshi Fujimoto & Toshikazu Baba & Daichi Moriyasu & Biswanath Saha & Richi Sakaguchi & Shigenori Inagaki & Takeshi Imai, 2024. "Automated neuronal reconstruction with super-multicolour Tetbow labelling and threshold-based clustering of colour hues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Gustavo Della-Flora Nunes & Lindsay A. Osso & Johana A. Haynes & Lauren Conant & Michael A. Thornton & Michael E. Stockton & Katherine A. Brassell & Amanda Morris & Yessenia I. Mancha Corchado & John , 2025. "Incomplete remyelination via therapeutically enhanced oligodendrogenesis is sufficient to recover visual cortical function," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    6. Gal Atlan & Noa Matosevich & Noa Peretz-Rivlin & Idit Marsh-Yvgi & Noam Zelinger & Eden Chen & Timna Kleinman & Noa Bleistein & Efrat Sheinbach & Maya Groysman & Yuval Nir & Ami Citri, 2024. "Claustrum neurons projecting to the anterior cingulate restrict engagement during sleep and behavior," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Olga Gliko & Matt Mallory & Rachel Dalley & Rohan Gala & James Gornet & Hongkui Zeng & Staci A. Sorensen & Uygar Sümbül, 2024. "High-throughput analysis of dendrite and axonal arbors reveals transcriptomic correlates of neuroanatomy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Zengpeng Han & Nengsong Luo & Wenyu Ma & Xiaodong Liu & Yuxiang Cai & Jiaxin Kou & Jie Wang & Lei Li & Siqi Peng & Zihong Xu & Wen Zhang & Yuxiang Qiu & Yang Wu & Chaohui Ye & Kunzhang Lin & Fuqiang X, 2023. "AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Diek W. Wheeler & Shaina Banduri & Sruthi Sankararaman & Samhita Vinay & Giorgio A. Ascoli, 2024. "Unsupervised classification of brain-wide axons reveals the presubiculum neuronal projection blueprint," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Ioannis Mantas & Ivana Flais & Yuvarani Masarapu & Tudor Ionescu & Solène Frapard & Felix Jung & Pierre Merre & Marcus Saarinen & Katarina Tiklova & Behzad Yaghmaeian Salmani & Linda Gillberg & Xiaoqu, 2024. "Claustrum and dorsal endopiriform cortex complex cell-identity is determined by Nurr1 and regulates hallucinogenic-like states in mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Chen-Rui Xia & Zhi-Jie Cao & Xin-Ming Tu & Ge Gao, 2023. "Spatial-linked alignment tool (SLAT) for aligning heterogenous slices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Fae N. Kronman & Josephine K. Liwang & Rebecca Betty & Daniel J. Vanselow & Yuan-Ting Wu & Nicholas J. Tustison & Ashwin Bhandiwad & Steffy B. Manjila & Jennifer A. Minteer & Donghui Shin & Choong Heo, 2024. "Developmental mouse brain common coordinate framework," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Vincent On & Atena Zahedi & Iryna M Ethell & Bir Bhanu, 2017. "Automated spatio-temporal analysis of dendritic spines and related protein dynamics," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1276-:d:1633602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.