IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i7p1143-d1624533.html
   My bibliography  Save this article

Pontryagin’s Principle-Based Algorithms for Optimal Control Problems of Parabolic Equations

Author

Listed:
  • Weilong You

    (College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Fu Zhang

    (College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract

This paper applies the Method of Successive Approximations (MSA) based on Pontryagin’s principle to solve optimal control problems with state constraints for semilinear parabolic equations. Error estimates for the first and second derivatives of the function are derived under L ∞ -bounded conditions. An augmented MSA is developed using the augmented Lagrangian method, and its convergence is proven. The effectiveness of the proposed method is demonstrated through numerical experiments.

Suggested Citation

  • Weilong You & Fu Zhang, 2025. "Pontryagin’s Principle-Based Algorithms for Optimal Control Problems of Parabolic Equations," Mathematics, MDPI, vol. 13(7), pages 1-17, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1143-:d:1624533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/7/1143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/7/1143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. W. Beard & G. N. Saridis & J. T. Wen, 1998. "Approximate Solutions to the Time-Invariant Hamilton–Jacobi–Bellman Equation," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 589-626, March.
    2. Wei Kang & Lucas C. Wilcox, 2017. "Mitigating the curse of dimensionality: sparse grid characteristics method for optimal feedback control and HJB equations," Computational Optimization and Applications, Springer, vol. 68(2), pages 289-315, November.
    3. S. C. Beeler & H. T. Tran & H. T. Banks, 2000. "Feedback Control Methodologies for Nonlinear Systems," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 1-33, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasanna Parvathy & Jeevamma Jacob, 2021. "Inverse Optimal Control Via Diagonal Stabilization Applied to Attitude Tracking of a Reusable Launch Vehicle," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 794-822, December.
    2. Cesar O. Aguilar & Arthur J. Krener, 2014. "Numerical Solutions to the Bellman Equation of Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 527-552, February.
    3. Vito Polito, 2020. "Nonlinear Business Cycle and Optimal Policy: A VSTAR Perspective," CESifo Working Paper Series 8060, CESifo.
    4. Goodarzi, Milad & Meinerding, Christoph, 2023. "Asset allocation with recursive parameter updating and macroeconomic regime identifiers," Discussion Papers 06/2023, Deutsche Bundesbank.
    5. Marianne Akian & Jean-Philippe Chancelier & Benoît Tran, 2025. "A stochastic algorithm for deterministic multistage optimization problems," Annals of Operations Research, Springer, vol. 345(1), pages 1-38, February.
    6. Xiangdong Liu & Yu Gu, 2023. "Study of Pricing of High-Dimensional Financial Derivatives Based on Deep Learning," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    7. S. C. Beeler & H. T. Tran & H. T. Banks, 2000. "Feedback Control Methodologies for Nonlinear Systems," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 1-33, October.
    8. Angelo Alessandri & Patrizia Bagnerini & Roberto Cianci & Mauro Gaggero, 2019. "Optimal Propagating Fronts Using Hamilton-Jacobi Equations," Mathematics, MDPI, vol. 7(11), pages 1-10, November.
    9. Li-Gang Lin & Yew-Wen Liang & Wen-Yuan Hsieh, 2020. "Convex Quadratic Equation," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 1006-1028, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1143-:d:1624533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.