IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i6p995-d1615023.html
   My bibliography  Save this article

Existence Results and Gap Functions for Nonsmooth Weak Vector Variational-Hemivariational Inequality Problems on Hadamard Manifolds

Author

Listed:
  • Balendu Bhooshan Upadhyay

    (Department of Mathematics, Indian Institute of Technology Patna, Patna 801103, Bihar, India)

  • Shivani Sain

    (Department of Mathematics, Indian Institute of Technology Patna, Patna 801103, Bihar, India)

  • Priyanka Mishra

    (Mathematics Division, School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore 466114, Madhya Pradesh, India)

  • Ioan Stancu-Minasian

    (“Gheorghe Mihoc-Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, 050711 Bucharest, Romania)

Abstract

In this paper, we consider a class of nonsmooth weak vector variational-hemivariational inequality problems (abbreviated as, WVVHVIP) in the framework of Hadamard manifolds. By employing an analogous to the KKM lemma, we establish the existence of the solutions for WVVHVIP without utilizing any monotonicity assumptions. Moreover, a uniqueness result for the solutions of WVVHVIP is established by using generalized geodesic strong monotonicity assumptions. We formulate Auslender, regularized, and Moreau-Yosida regularized type gap functions for WVVHVIP to establish necessary and sufficient conditions for the existence of the solutions to WVVHVIP. In addition to this, by employing the Auslender, regularized, and Moreau-Yosida regularized type gap functions, we derive the global error bounds for the solution of WVVHVIP under the generalized geodesic strong monotonicity assumptions. Several non-trivial examples are furnished in the Hadamard manifold setting to illustrate the significance of the established results. To the best of our knowledge, this is the first time that the existence results, gap functions, and global error bounds for WVVHVIP have been investigated in the framework of Hadamard manifolds via Clarke subdifferentials.

Suggested Citation

  • Balendu Bhooshan Upadhyay & Shivani Sain & Priyanka Mishra & Ioan Stancu-Minasian, 2025. "Existence Results and Gap Functions for Nonsmooth Weak Vector Variational-Hemivariational Inequality Problems on Hadamard Manifolds," Mathematics, MDPI, vol. 13(6), pages 1-34, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:6:p:995-:d:1615023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/6/995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/6/995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. X. Q. Yang & C. J. Goh, 1997. "On Vector Variational Inequalities: Application to Vector Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 431-443, November.
    2. Savin Treanţă & Priyanka Mishra & Balendu Bhooshan Upadhyay, 2022. "Minty Variational Principle for Nonsmooth Interval-Valued Vector Optimization Problems on Hadamard Manifolds," Mathematics, MDPI, vol. 10(3), pages 1-15, February.
    3. Guo-ji Tang & Nan-jing Huang, 2013. "Existence theorems of the variational-hemivariational inequalities," Journal of Global Optimization, Springer, vol. 56(2), pages 605-622, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinjie Liu & Xinmin Yang & Shengda Zeng & Yong Zhao, 2022. "Coupled Variational Inequalities: Existence, Stability and Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 877-909, June.
    2. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    3. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    4. Ruiz-Garzon, G. & Osuna-Gomez, R. & Rufian-Lizana, A., 2004. "Relationships between vector variational-like inequality and optimization problems," European Journal of Operational Research, Elsevier, vol. 157(1), pages 113-119, August.
    5. S.J. Li & G.Y. Chen & K.L. Teo, 2002. "On the Stability of Generalized Vector Quasivariational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(2), pages 283-295, May.
    6. I.V. Konnov, 2003. "On Lexicographic Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 118(3), pages 681-688, September.
    7. Le Tuan & Gue Lee & Pham Sach, 2010. "Upper semicontinuity result for the solution mapping of a mixed parametric generalized vector quasiequilibrium problem with moving cones," Journal of Global Optimization, Springer, vol. 47(4), pages 639-660, August.
    8. Arnav Ghosh & Balendu Bhooshan Upadhyay & I. M. Stancu-Minasian, 2023. "Pareto Efficiency Criteria and Duality for Multiobjective Fractional Programming Problems with Equilibrium Constraints on Hadamard Manifolds," Mathematics, MDPI, vol. 11(17), pages 1-28, August.
    9. Tadeusz Antczak & Najeeb Abdulaleem, 2024. "On vector variational E-inequalities and differentiable vector optimization problem," OPSEARCH, Springer;Operational Research Society of India, vol. 61(1), pages 460-482, March.
    10. Goh, C. J. & Yang, X. Q., 1999. "Vector equilibrium problem and vector optimization," European Journal of Operational Research, Elsevier, vol. 116(3), pages 615-628, August.
    11. X. M. Yang & X. Q. Yang & K. L. Teo, 2004. "Some Remarks on the Minty Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 193-201, April.
    12. Y. Chiang & J. C. Yao, 2004. "Vector Variational Inequalities and the (S)+ Condition," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 271-290, November.
    13. E. Allevi & A. Gnudi & I. Konnov & S. Schaible, 2007. "Characterizations of relatively generalized monotone maps," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 293-303, April.
    14. Savin Treanţă & Balendu Bhooshan Upadhyay & Arnav Ghosh & Kamsing Nonlaopon, 2022. "Optimality Conditions for Multiobjective Mathematical Programming Problems with Equilibrium Constraints on Hadamard Manifolds," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    15. T. C. E. Cheng & Y. N. Wu, 2006. "A Multiproduct, Multicriterion Supply-Demand Network Equilibrium Model," Operations Research, INFORMS, vol. 54(3), pages 544-554, June.
    16. Nina Ovcharova & Joachim Gwinner, 2016. "Semicoercive Variational Inequalities: From Existence to Numerical Solution of Nonmonotone Contact Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 422-439, November.
    17. Shengda Zeng & Dumitru Motreanu & Akhtar A. Khan, 2022. "Evolutionary Quasi-Variational-Hemivariational Inequalities I: Existence and Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 950-970, June.
    18. Yunan Wu & Yuchen Peng & Long Peng & Ling Xu, 2012. "Super Efficiency of Multicriterion Network Equilibrium Model and Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 485-496, May.
    19. S. Al-Homidan & Q. H. Ansari, 2010. "Generalized Minty Vector Variational-Like Inequalities and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 1-11, January.
    20. Balendu Bhooshan Upadhyay & Subham Poddar & Jen-Chih Yao & Xiaopeng Zhao, 2025. "Inexact proximal point method with a Bregman regularization for quasiconvex multiobjective optimization problems via limiting subdifferentials," Annals of Operations Research, Springer, vol. 345(1), pages 417-466, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:6:p:995-:d:1615023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.