IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p886-d1606972.html
   My bibliography  Save this article

Limit Theorems for Kernel Regression Estimator for Quasi-Associated Functional Censored Time Series Within Single Index Structure

Author

Listed:
  • Said Attaoui

    (Department of Mathematics, University of Sciences and Technology Mohamed Boudiaf, Oran BP 1505, El Mnaouar-Oran 31000, Algeria
    These authors contributed equally to this work.)

  • Oum Elkheir Benouda

    (Department of Mathematics, University of Sciences and Technology Mohamed Boudiaf, Oran BP 1505, El Mnaouar-Oran 31000, Algeria
    These authors contributed equally to this work.)

  • Salim Bouzebda

    (LMAC (Laboratory of Applied Mathematics of Compiègne), Université de Technologie de Compiègne, CS 60 319-60 203 Compiègne Cedex, 60203 Compiègne, France
    These authors contributed equally to this work.)

  • Ali Laksaci

    (Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia
    These authors contributed equally to this work.)

Abstract

In this paper, we develop kernel-based estimators for regression functions under a functional single-index model, applied to censored time series data. By capitalizing on the single-index structure, we reduce the dimensionality of the covariate-response relationship, thereby preserving the ability to capture intricate dependencies while maintaining a relatively parsimonious form. Specifically, our framework utilizes nonparametric kernel estimation within a quasi-association setting to characterize the underlying relationships. Under mild regularity conditions, we demonstrate that these estimators attain both strong uniform consistency and asymptotic normality. Through extensive simulation experiments, we confirm their robust finite-sample performance. Moreover, an empirical examination using intraday Nikkei stock index returns illustrates that the proposed method significantly outperforms traditional nonparametric regression approaches.

Suggested Citation

  • Said Attaoui & Oum Elkheir Benouda & Salim Bouzebda & Ali Laksaci, 2025. "Limit Theorems for Kernel Regression Estimator for Quasi-Associated Functional Censored Time Series Within Single Index Structure," Mathematics, MDPI, vol. 13(5), pages 1-39, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:886-:d:1606972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    2. Salim Bouzebda, 2024. "Limit Theorems in the Nonparametric Conditional Single-Index U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 12(13), pages 1-81, June.
    3. Frédéric Ferraty & Philippe Vieu, 2002. "The Functional Nonparametric Model and Application to Spectrometric Data," Computational Statistics, Springer, vol. 17(4), pages 545-564, December.
    4. Carbonez A. & Györfi L. & Meulen E.C. van der, 1995. "Partitioning-Estimates Of A Regression Function Under Random Censoring," Statistics & Risk Modeling, De Gruyter, vol. 13(1), pages 21-38, January.
    5. Ming-yen Cheng & Hau-tieng Wu, 2013. "Local Linear Regression on Manifolds and Its Geometric Interpretation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1421-1434, December.
    6. Delecroix, Michel & Härdle, Wolfgang & Hristache, Marian, 2003. "Efficient estimation in conditional single-index regression," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 213-226, August.
    7. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    8. Bulinski, Alexander & Suquet, Charles, 2001. "Normal approximation for quasi-associated random fields," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 215-226, September.
    9. Guochang Wang & Xiang-Nan Feng & Min Chen, 2016. "Functional Partial Linear Single-index Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 261-274, March.
    10. Pham, Tuan D. & Tran, Lanh T., 1985. "Some mixing properties of time series models," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 297-303, April.
    11. Silvia Novo & Germán Aneiros & Philippe Vieu, 2019. "Automatic and location-adaptive estimation in functional single-index regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(2), pages 364-392, April.
    12. Salim Bouzebda & Sultana Didi, 2017. "Multivariate wavelet density and regression estimators for stationary and ergodic discrete time processes: Asymptotic results," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(3), pages 1367-1406, February.
    13. Strzalkowska-Kominiak, Ewa & Cao, Ricardo, 2013. "Maximum likelihood estimation for conditional distribution single-index models under censoring," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 74-98.
    14. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    15. Said Attaoui & Nengxiang Ling, 2016. "Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 485-511, July.
    16. Kohler, Michael & Máthé, Kinga & Pintér, Márta, 2002. "Prediction from Randomly Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 73-100, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Said Attaoui, 2014. "Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 257-286, July.
    2. Nour-Eddine Berrahou & Salim Bouzebda & Lahcen Douge, 2024. "The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-37, June.
    3. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    4. Said Attaoui & Nengxiang Ling, 2016. "Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 485-511, July.
    5. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    6. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    7. Weiyu Li & Valentin Patilea, 2018. "A dimension reduction approach for conditional Kaplan–Meier estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 295-315, June.
    8. Ould-SaI¨d, Elias, 2006. "A strong uniform convergence rate of kernel conditional quantile estimator under random censorship," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 579-586, March.
    9. Kadiri Nadia & Rabhi Abbes & Bouchentouf Amina Angelika, 2018. "Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship," Dependence Modeling, De Gruyter, vol. 6(1), pages 197-227, November.
    10. Andrea Meilán-Vila & Rosa M. Crujeiras & Mario Francisco-Fernández, 2024. "Nonparametric estimation for a functional-circular regression model," Statistical Papers, Springer, vol. 65(2), pages 945-974, April.
    11. Hong, Seok Young & Linton, Oliver, 2020. "Nonparametric estimation of infinite order regression and its application to the risk-return tradeoff," Journal of Econometrics, Elsevier, vol. 219(2), pages 389-424.
    12. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    13. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    14. Berkes, István & Horváth, Lajos & Rice, Gregory, 2016. "On the asymptotic normality of kernel estimators of the long run covariance of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 150-175.
    15. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Chaouch, Mohamed, 2019. "Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 129-148.
    17. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
    18. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    19. Frédéric Ferraty & Ingrid Van Keilegom & Philippe Vieu, 2010. "On the Validity of the Bootstrap in Non‐Parametric Functional Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 286-306, June.
    20. Sancetta, Alessio, 2009. "Nearest neighbor conditional estimation for Harris recurrent Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2224-2236, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:886-:d:1606972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.