IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i10p1587-d1654016.html
   My bibliography  Save this article

Wavelet Estimation of Partial Derivatives in Multivariate Regression Under Discrete-Time Stationary Ergodic Processes

Author

Listed:
  • Sultana Didi

    (Department of Statistics and Operations Research, College of Sciences, Qassim University, P.O. Box 6688, Buraydah 51452, Saudi Arabia
    These authors contributed equally to this work.)

  • Salim Bouzebda

    (Université de Technologie de Compiègne, LMAC (Laboratory of Applied Mathematics of Compiègne), CS 60 319-60 203 Compiègne, France
    These authors contributed equally to this work.)

Abstract

This study introduces a wavelet-based framework for estimating derivatives of a general regression function within discrete-time, stationary ergodic processes. The analysis focuses on deriving the integrated mean squared error (IMSE) over compact subsets of R d , while also establishing rates of uniform convergence and the asymptotic normality of the proposed estimators. To investigate their asymptotic behavior, we adopt a martingale-based approach specifically adapted to the ergodic nature of the data-generating process. Importantly, the framework imposes no structural assumptions beyond ergodicity, thereby circumventing restrictive dependence conditions. By establishing the limiting behavior of the wavelet estimators under these minimal assumptions, the results extend existing findings for independent data and highlight the flexibility of wavelet methods in more general stochastic settings.

Suggested Citation

  • Sultana Didi & Salim Bouzebda, 2025. "Wavelet Estimation of Partial Derivatives in Multivariate Regression Under Discrete-Time Stationary Ergodic Processes," Mathematics, MDPI, vol. 13(10), pages 1-36, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1587-:d:1654016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/10/1587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/10/1587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouzebda, Salim & Limnios, Nikolaos, 2013. "On general bootstrap of empirical estimator of a semi-Markov kernel with applications," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 52-62.
    2. F. Roueff & M. S. Taqqu, 2009. "Asymptotic normality of wavelet estimators of the memory parameter for linear processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(5), pages 534-558, September.
    3. Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
    4. Tang, Xufei & Xi, Mengmei & Wu, Yi & Wang, Xuejun, 2018. "Asymptotic normality of a wavelet estimator for asymptotically negatively associated errors," Statistics & Probability Letters, Elsevier, vol. 140(C), pages 191-201.
    5. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
    6. Salim Bouzebda & Sultana Didi, 2017. "Multivariate wavelet density and regression estimators for stationary and ergodic discrete time processes: Asymptotic results," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(3), pages 1367-1406, February.
    7. Dominique Guegan & Sophie A. Ladoucette, 2001. "Non-mixing properties of long memory processes," Post-Print halshs-00193651, HAL.
    8. Evarist Giné & David M. Mason, 2008. "Uniform in Bandwidth Estimation of Integral Functionals of the Density Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 739-761, December.
    9. Li, Yongming & Yang, Shanchao & Zhou, Yong, 2008. "Consistency and uniformly asymptotic normality of wavelet estimator in regression model with associated samples," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2947-2956, December.
    10. Paul Deheuvels & David Mason, 2004. "General Asymptotic Confidence Bands Based on Kernel-type Function Estimators," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 225-277, October.
    11. Park, Cheolwoo & Kang, Kee-Hoon, 2008. "SiZer analysis for the comparison of regression curves," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3954-3970, April.
    12. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    13. Soumaya Allaoui & Salim Bouzebda & Jicheng Liu, 2023. "Multivariate wavelet estimators for weakly dependent processes: strong consistency rate," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(23), pages 8317-8350, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salim Bouzebda & Mohamed Chaouch & Sultana Didi Biha, 2022. "Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 737-771, August.
    2. Nour-Eddine Berrahou & Salim Bouzebda & Lahcen Douge, 2024. "The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-37, June.
    3. Krebs, Johannes T.N., 2018. "Nonparametric density estimation for spatial data with wavelets," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 300-319.
    4. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    5. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    6. Salim Bouzebda & Christophe Chesneau, 2020. "A Note on the Nonparametric Estimation of the Conditional Mode by Wavelet Methods," Stats, MDPI, vol. 3(4), pages 1-9, October.
    7. Salim Bouzebda & Issam Elhattab & Anouar Abdeldjaoued Ferfache, 2022. "General M-Estimator Processes and their m out of n Bootstrap with Functional Nuisance Parameters," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2961-3005, December.
    8. Paul Deheuvels & Sarah Ouadah, 2013. "Uniform-in-Bandwidth Functional Limit Laws," Journal of Theoretical Probability, Springer, vol. 26(3), pages 697-721, September.
    9. José E. Chacón & Carlos Tenreiro, 2012. "Exact and Asymptotically Optimal Bandwidths for Kernel Estimation of Density Functionals," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 523-548, September.
    10. Varron, Davit, 2008. "Some asymptotic results on density estimators by wavelet projections," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2517-2521, October.
    11. Mokkadem, Abdelkader & Pelletier, Mariane, 2020. "Online estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 166(C).
    12. Christopher Partlett & Prakash Patil, 2017. "Measuring asymmetry and testing symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 429-460, April.
    13. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    14. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    15. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Dufrenot, Gilles & Guegan, Dominique & Peguin-Feissolle, Anne, 2005. "Long-memory dynamics in a SETAR model - applications to stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(5), pages 391-406, December.
    17. Roueff, François & von Sachs, Rainer, 2011. "Locally stationary long memory estimation," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 813-844, April.
    18. Laurent Ferrara & Dominique Guegan, 2006. "Fractional seasonality: Models and Application to Economic Activity in the Euro Area," Post-Print halshs-00185370, HAL.
    19. Federico Ferraccioli & Giovanna Menardi, 2023. "Modal clustering of matrix-variate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 323-345, June.
    20. Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1587-:d:1654016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.