IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1614-d1398765.html
   My bibliography  Save this article

Distributed Drive Autonomous Vehicle Trajectory Tracking Control Based on Multi-Agent Deep Reinforcement Learning

Author

Listed:
  • Yalei Liu

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Weiping Ding

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Mingliang Yang

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Honglin Zhu

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Liyuan Liu

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Tianshi Jin

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

In order to enhance the trajectory tracking accuracy of distributed-driven intelligent vehicles, this paper formulates the tasks of torque output control for longitudinal dynamics and steering angle output control for lateral dynamics as Markov decision processes. To dissect the requirements of action output continuity for longitudinal and lateral control, this paper adopts the deep deterministic policy gradient algorithm (DDPG) for longitudinal velocity control and the deep Q-network algorithm (DQN) for lateral motion control. Multi-agent reinforcement learning methods are applied to the task of trajectory tracking in distributed-driven vehicle autonomous driving. By contrasting with two classical trajectory tracking control methods, the proposed approach in this paper is validated to exhibit superior trajectory tracking performance, ensuring that both longitudinal velocity deviation and lateral position deviation of the vehicle remain at lower levels. Compared with classical control methods, the maximum lateral position deviation is improved by up to 90.5% and the maximum longitudinal velocity deviation is improved by up to 97%. Furthermore, it demonstrates excellent generalization and high computational efficiency, and the running time can be reduced by up to 93.7%.

Suggested Citation

  • Yalei Liu & Weiping Ding & Mingliang Yang & Honglin Zhu & Liyuan Liu & Tianshi Jin, 2024. "Distributed Drive Autonomous Vehicle Trajectory Tracking Control Based on Multi-Agent Deep Reinforcement Learning," Mathematics, MDPI, vol. 12(11), pages 1-21, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1614-:d:1398765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1614/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1614/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Hongqian & Zhang, Nan & Liang, Jun & Ai, Qiang & Zhao, Wenqiang & Huang, Tianyi & Zhang, Youtong, 2022. "Deep reinforcement learning based direct torque control strategy for distributed drive electric vehicles considering active safety and energy saving performance," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Fuwu Yan & Jinhai Wang & Changqing Du & Min Hua, 2022. "Multi-Objective Energy Management Strategy for Hybrid Electric Vehicles Based on TD3 with Non-Parametric Reward Function," Energies, MDPI, vol. 16(1), pages 1-17, December.
    3. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    4. Sun, Binbin & Li, Bo & Xing, Jilei & Yu, Xiao & Xie, Mengxue & Hu, Zihao, 2024. "Analysis of the influence of electric flywheel and electromechanical flywheel on electric vehicle economy," Energy, Elsevier, vol. 295(C).
    5. Fan, Likang & Wang, Yufei & Wei, Hongqian & Zhang, Youtong & Zheng, Pengyu & Huang, Tianyi & Li, Wei, 2022. "A GA-based online real-time optimized energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 241(C).
    6. Wei, Hongqian & Zhang, Youtong & Wang, Yongzhen & Hua, Weiqi & Jing, Rui & Zhou, Yue, 2022. "Planning integrated energy systems coupling V2G as a flexible storage," Energy, Elsevier, vol. 239(PB).
    7. Deping Wang & Changyang Guan & Junnian Wang & Haisheng Wang & Zhenhao Zhang & Dachang Guo & Fang Yang, 2023. "Review of Energy-Saving Technologies for Electric Vehicles, from the Perspective of Driving Energy Management," Sustainability, MDPI, vol. 15(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1614-:d:1398765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.