IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1431-d1389841.html
   My bibliography  Save this article

A Dynamic Tasking-Based Evolutionary Algorithm for Bi-Objective Feature Selection

Author

Listed:
  • Hang Xu

    (School of Mechanical, Electrical & Information Engineering, Putian University, Putian 351100, China)

Abstract

Feature selection in classification is a complex optimization problem that cannot be solved in polynomial time. Bi-objective feature selection, aiming to minimize both selected features and classification errors, is challenging due to the conflict between objectives, while one of the most effective ways to tackle this is to use multi-objective evolutionary algorithms. However, very few of these have ever reflected an evolutionary multi-tasking framework, despite the implicit parallelism offered by the population-based search characteristic. In this paper, a dynamic multi-tasking-based multi-objective evolutionary algorithm (termed DTEA) is proposed for handling bi-objective feature selection in classification, which is not only suitable for datasets with relatively lower dimensionality of features, but is also suitable for datasets with relatively higher dimensionality of features. The role and influence of multi-tasking on multi-objective evolutionary feature selection were studied, and a dynamic tasking mechanism is proposed to self-adaptively assign multiple evolutionary search tasks by intermittently analyzing the population behaviors. The efficacy of DTEA is tested on 20 classification datasets and compared with seven state-of-the-art evolutionary algorithms. A component contribution analysis was also conducted by comparing DTEA with its three variants. The empirical results show that the dynamic-tasking mechanism works efficiently and enables DTEA to outperform other algorithms on most datasets in terms of both optimization and classification.

Suggested Citation

  • Hang Xu, 2024. "A Dynamic Tasking-Based Evolutionary Algorithm for Bi-Objective Feature Selection," Mathematics, MDPI, vol. 12(10), pages 1-23, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1431-:d:1389841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    2. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    3. Nahar F. Alshammari & Mohamed Mahmoud Samy & Shimaa Barakat, 2023. "Comprehensive Analysis of Multi-Objective Optimization Algorithms for Sustainable Hybrid Electric Vehicle Charging Systems," Mathematics, MDPI, vol. 11(7), pages 1-31, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    2. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    3. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    4. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    5. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    6. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    7. Braun, Marlon & Shukla, Pradyumn, 2024. "On cone-based decompositions of proper Pareto-optimality in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 592-602.
    8. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    9. José Antonio Castán Rocha & Alejandro Santiago & Alejandro H. García-Ruiz & Jesús David Terán-Villanueva & Salvador Ibarra Martínez & Mayra Guadalupe Treviño Berrones, 2024. "Pareto Approximation Empirical Results of Energy-Aware Optimization for Precedence-Constrained Task Scheduling Considering Switching Off Completely Idle Machines," Mathematics, MDPI, vol. 12(23), pages 1-53, November.
    10. Dubois-Lacoste, Jérémie & López-Ibáñez, Manuel & Stützle, Thomas, 2015. "Anytime Pareto local search," European Journal of Operational Research, Elsevier, vol. 243(2), pages 369-385.
    11. Hyoungjin Kim & Meng-Sing Liou, 2013. "New fitness sharing approach for multi-objective genetic algorithms," Journal of Global Optimization, Springer, vol. 55(3), pages 579-595, March.
    12. Hang Xu & Chaohui Huang & Hui Wen & Tao Yan & Yuanmo Lin & Ying Xie, 2024. "A Hybrid Initialization and Effective Reproduction-Based Evolutionary Algorithm for Tackling Bi-Objective Large-Scale Feature Selection in Classification," Mathematics, MDPI, vol. 12(4), pages 1-24, February.
    13. Miettinen, Kaisa & Molina, Julián & González, Mercedes & Hernández-Díaz, Alfredo & Caballero, Rafael, 2009. "Using box indices in supporting comparison in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 197(1), pages 17-24, August.
    14. Tangpattanakul, Panwadee & Jozefowiez, Nicolas & Lopez, Pierre, 2015. "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite," European Journal of Operational Research, Elsevier, vol. 245(2), pages 542-554.
    15. Luan, Wenpeng & Tian, Longfei & Zhao, Bochao, 2023. "Leveraging hybrid probabilistic multi-objective evolutionary algorithm for dynamic tariff design," Applied Energy, Elsevier, vol. 342(C).
    16. Cosson, Raphaël & Santana, Roberto & Derbel, Bilel & Liefooghe, Arnaud, 2024. "On bi-objective combinatorial optimization with heterogeneous objectives," European Journal of Operational Research, Elsevier, vol. 319(1), pages 89-101.
    17. Allmendinger, Richard & Handl, Julia & Knowles, Joshua, 2015. "Multiobjective optimization: When objectives exhibit non-uniform latencies," European Journal of Operational Research, Elsevier, vol. 243(2), pages 497-513.
    18. Hang Xu & Chaohui Huang & Jianbing Lin & Min Lin & Huahui Zhang & Rongbin Xu, 2024. "A Multi-Task Decomposition-Based Evolutionary Algorithm for Tackling High-Dimensional Bi-Objective Feature Selection," Mathematics, MDPI, vol. 12(8), pages 1-23, April.
    19. Weihua Qian & Hang Xu & Houjin Chen & Lvqing Yang & Yuanguo Lin & Rui Xu & Mulan Yang & Minghong Liao, 2024. "A Synergistic MOEA Algorithm with GANs for Complex Data Analysis," Mathematics, MDPI, vol. 12(2), pages 1-30, January.
    20. Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1431-:d:1389841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.