IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p304-d1027774.html
   My bibliography  Save this article

NARX Deep Convolutional Fuzzy System for Modelling Nonlinear Dynamic Processes

Author

Listed:
  • Marjan Golob

    (Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia)

Abstract

This paper presents a new approach for modelling nonlinear dynamic processes (NDP). It is based on a nonlinear autoregressive with exogenous (NARX) inputs model structure and a deep convolutional fuzzy system (DCFS). The DCFS is a hierarchical fuzzy structure, which can overcome the deficiency of general fuzzy systems when facing high dimensional data. For relieving the curse of dimensionality, as well as improving approximation performance of fuzzy models, we propose combining the NARX with the DCFS to provide a good approximation of the complex nonlinear dynamic behavior and a fast-training algorithm with ensured convergence. There are three NARX DCFS structures proposed, and the appropriate training algorithm is adapted. Evaluations were performed on a popular benchmark—Box and Jenkin’s gas furnace data set and the four nonlinear dynamic test systems. The experiments show that the proposed NARX DCFS method can be successfully used to identify nonlinear dynamic systems based on external dynamics structures and nonlinear static approximators.

Suggested Citation

  • Marjan Golob, 2023. "NARX Deep Convolutional Fuzzy System for Modelling Nonlinear Dynamic Processes," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:304-:d:1027774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li-Xin Wang, 2018. "Fast Training Algorithms for Deep Convolutional Fuzzy Systems with Application to Stock Index Prediction," Papers 1812.11226, arXiv.org, revised Aug 2019.
    2. Ebubekir Kaya, 2022. "A New Neural Network Training Algorithm Based on Artificial Bee Colony Algorithm for Nonlinear System Identification," Mathematics, MDPI, vol. 10(19), pages 1-27, September.
    3. Eduardo Rangel & Erasmo Cadenas & Rafael Campos-Amezcua & Jorge L. Tena, 2020. "Enhanced Prediction of Solar Radiation Using NARX Models with Corrected Input Vectors," Energies, MDPI, vol. 13(10), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sherif A. Zaid & Ahmed M. Kassem & Aadel M. Alatwi & Hani Albalawi & Hossam AbdelMeguid & Atef Elemary, 2023. "Optimal Control of an Autonomous Microgrid Integrated with Super Magnetic Energy Storage Using an Artificial Bee Colony Algorithm," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    2. Eduardo Rangel-Heras & César Angeles-Camacho & Erasmo Cadenas-Calderón & Rafael Campos-Amezcua, 2022. "Short-Term Forecasting of Energy Production for a Photovoltaic System Using a NARX-CVM Hybrid Model," Energies, MDPI, vol. 15(8), pages 1-23, April.
    3. Ali Najem Alkawaz & Jeevan Kanesan & Anis Salwa Mohd Khairuddin & Irfan Anjum Badruddin & Sarfaraz Kamangar & Mohamed Hussien & Maughal Ahmed Ali Baig & N. Ameer Ahammad, 2023. "Training Multilayer Neural Network Based on Optimal Control Theory for Limited Computational Resources," Mathematics, MDPI, vol. 11(3), pages 1-15, February.
    4. Li, Chengdong & Zhou, Changgeng & Peng, Wei & Lv, Yisheng & Luo, Xin, 2020. "Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method," Energy, Elsevier, vol. 212(C).
    5. Yunshan Sun & Qian Huang & Ting Liu & Yuetong Cheng & Yanqin Li, 2023. "Multi-Strategy Enhanced Harris Hawks Optimization for Global Optimization and Deep Learning-Based Channel Estimation Problems," Mathematics, MDPI, vol. 11(2), pages 1-28, January.
    6. Hassan, Muhammed A. & Al-Ghussain, Loiy & Khalil, Adel & Kaseb, Sayed A., 2022. "Self-calibrated hybrid weather forecasters for solar thermal and photovoltaic power plants," Renewable Energy, Elsevier, vol. 188(C), pages 1120-1140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:304-:d:1027774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.