IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p300-d1027507.html
   My bibliography  Save this article

Exploration of New Optical Solitons in Magneto-Optical Waveguide with Coupled System of Nonlinear Biswas–Milovic Equation via Kudryashov’s Law Using Extended F-Expansion Method

Author

Listed:
  • Wafaa B. Rabie

    (Department of Basic Sciences, Higher Institute of Engineering and Technology, Menoufia 32821, Egypt
    Department of Physics and Engineering Mathematics, Higher Institute of Engineering and Technology, Tanta 34517, Egypt)

  • Hamdy M. Ahmed

    (Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk Academy, El-Shorouk City 11837, Egypt)

  • Walid Hamdy

    (Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk Academy, El-Shorouk City 11837, Egypt)

Abstract

Optical soliton solutions in a magneto-optical waveguide and other exact solutions are investigated for the coupled system of the nonlinear Biswas–Milovic equation with Kudryashov’s law using the extended F-expansion method. Various types of solutions are extracted, such as dark soliton solutions, singular soliton solutions, a dark–singular combo soliton, singular combo soliton solutions, Jacobi elliptic solutions, periodic solutions, combo periodic solutions, hyperbolic solutions, rational solutions, exponential solutions and Weierstrass solutions. The obtained different types of wave solutions help in obtaining nonlinear optical fibers in the future. Furthermore, some selected solutions are described graphically to demonstrate the physical nature of the obtained solutions. The results show that the current method gives effectual and direct mathematical tools for resolving the nonlinear problems in the field of nonlinear wave equations.

Suggested Citation

  • Wafaa B. Rabie & Hamdy M. Ahmed & Walid Hamdy, 2023. "Exploration of New Optical Solitons in Magneto-Optical Waveguide with Coupled System of Nonlinear Biswas–Milovic Equation via Kudryashov’s Law Using Extended F-Expansion Method," Mathematics, MDPI, vol. 11(2), pages 1-28, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:300-:d:1027507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. El-Sheikh, Mohamed M.A. & Seadawy, Aly R. & Ahmed, Hamdy M. & Arnous, Ahmed H. & Rabie, Wafaa B., 2020. "Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Abdou, M.A., 2007. "The extended F-expansion method and its application for a class of nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 95-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anwar Aldhafeeri & Muneerah Al Nuwairan, 2023. "Bifurcation of Some Novel Wave Solutions for Modified Nonlinear Schrödinger Equation with Time M-Fractional Derivative," Mathematics, MDPI, vol. 11(5), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seadawy, Aly R. & Ali, Asghar & Althobaiti, Saad & Sayed, Samy, 2021. "Propagation of wave solutions of nonlinear Heisenberg ferromagnetic spin chain and Vakhnenko dynamical equations arising in nonlinear water wave models," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Feiyun Pei & Guojiang Wu & Yong Guo, 2023. "Construction of Infinite Series Exact Solitary Wave Solution of the KPI Equation via an Auxiliary Equation Method," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    3. Estévez, P.G. & Kuru, Ş. & Negro, J. & Nieto, L.M., 2009. "Travelling wave solutions of the generalized Benjamin–Bona–Mahony equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2031-2040.
    4. Jang, Bongsoo, 2009. "New exact travelling wave solutions of nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 646-654.
    5. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    6. Erbaş, Barış & Yusufoğlu, Elçin, 2009. "Exp-function method for constructing exact solutions of Sharma–Tasso–Olver equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2326-2330.
    7. Ma, Wen-Xiu & Lee, Jyh-Hao, 2009. "A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1356-1363.
    8. Han, Tianyong & Li, Zhao & Li, Chenyu, 2023. "Bifurcation analysis, stationary optical solitons and exact solutions for generalized nonlinear Schrödinger equation with nonlinear chromatic dispersion and quintuple power-law of refractive index in ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    9. Silambarasan, Rathinavel & Nisar, Kottakkaran Sooppy, 2023. "Doubly periodic solutions and non-topological solitons of 2+1− dimension Wazwaz Kaur Boussinesq equation employing Jacobi elliptic function method," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Verma, Pallavi & Kaur, Lakhveer, 2019. "Integrability, bilinearization and analytic study of new form of (3+1)-dimensional B-type Kadomstev–Petviashvili (BKP)- Boussinesq equation," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 879-886.
    11. Ye, Caier & Zhang, Weiguo, 2011. "New explicit solutions for (2+1)-dimensional soliton equation," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1063-1069.
    12. Nur Alam & Fethi Bin Muhammad Belgacem, 2016. "Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ))-Expansion Method Implementation," Mathematics, MDPI, vol. 4(1), pages 1-13, February.
    13. Velasco-Juan, M. & Fujioka, J., 2020. "Integral complex modified Korteweg-de Vries (Icm-KdV) equations," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:300-:d:1027507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.