IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3923-d1240532.html
   My bibliography  Save this article

Distributionally Robust Reinsurance with Glue Value-at-Risk and Expected Value Premium

Author

Listed:
  • Wenhua Lv

    (School of Mathematics and Finance, Chuzhou University, Chuzhou 239000, China)

  • Linxiao Wei

    (College of Science, Wuhan University of Technology, Wuhan 430070, China)

Abstract

In this paper, we explore a distributionally robust reinsurance problem that incorporates the concepts of Glue Value-at-Risk and the expected value premium principle. The problem focuses on stop-loss reinsurance contracts with known mean and variance of the loss. The optimization problem can be formulated as a minimax problem, where the inner problem involves maximizing over all distributions with the same mean and variance. It is demonstrated that the inner problem can be represented as maximizing either over three-point distributions under some mild condition or over four-point distributions otherwise. Additionally, analytical solutions are provided for determining the optimal deductible and optimal values.

Suggested Citation

  • Wenhua Lv & Linxiao Wei, 2023. "Distributionally Robust Reinsurance with Glue Value-at-Risk and Expected Value Premium," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3923-:d:1240532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    2. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    3. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 487-509, November.
    4. Cai, Jun & Lemieux, Christiane & Liu, Fangda, 2016. "Optimal Reinsurance From The Perspectives Of Both An Insurer And A Reinsurer," ASTIN Bulletin, Cambridge University Press, vol. 46(3), pages 815-849, September.
    5. Hu, Xiang & Yang, Hailiang & Zhang, Lianzeng, 2015. "Optimal retention for a stop-loss reinsurance with incomplete information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 15-21.
    6. Dan Zhu & Chuancun Yin, 2023. "Optimal reinsurance policy under a new distortion risk measure," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(12), pages 4151-4164, June.
    7. K.C. Cheung & K.C.J. Sung & S.C.P. Yam & S.P. Yung, 2014. "Optimal reinsurance under general law-invariant risk measures," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2014(1), pages 72-91.
    8. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    9. Liu, Haiyan & Mao, Tiantian, 2022. "Distributionally robust reinsurance with Value-at-Risk and Conditional Value-at-Risk," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 393-417.
    10. Xie, Xinqiao & Liu, Haiyan & Mao, Tiantian & Zhu, Xiao Bai, 2023. "Distributionally robust reinsurance with expectile," ASTIN Bulletin, Cambridge University Press, vol. 53(1), pages 129-148, January.
    11. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2016. "The use of flexible quantile-based measures in risk assessment," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(6), pages 1670-1681, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    2. Mi Chen & Wenyuan Wang & Ruixing Ming, 2016. "Optimal Reinsurance Under General Law-Invariant Convex Risk Measure and TVaR Premium Principle," Risks, MDPI, vol. 4(4), pages 1-12, December.
    3. Ambrose Lo, 2016. "How Does Reinsurance Create Value to an Insurer? A Cost-Benefit Analysis Incorporating Default Risk," Risks, MDPI, vol. 4(4), pages 1-16, December.
    4. Boonen, Tim J. & Ghossoub, Mario, 2019. "On the existence of a representative reinsurer under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 209-225.
    5. Vincent, Léonard & Albrecher, Hansjörg & Krvavych, Yuriy, 2021. "Structured reinsurance deals with reference to relative market performance," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 125-139.
    6. Boonen, Tim J. & Ghossoub, Mario, 2021. "Optimal reinsurance with multiple reinsurers: Distortion risk measures, distortion premium principles, and heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 23-37.
    7. Asimit, Vali & Boonen, Tim J., 2018. "Insurance with multiple insurers: A game-theoretic approach," European Journal of Operational Research, Elsevier, vol. 267(2), pages 778-790.
    8. Asimit, Alexandru V. & Cheung, Ka Chun & Chong, Wing Fung & Hu, Junlei, 2020. "Pareto-optimal insurance contracts with premium budget and minimum charge constraints," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 17-27.
    9. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    10. Ambrose Lo & Zhaofeng Tang, 2019. "Pareto-optimal reinsurance policies in the presence of individual risk constraints," Annals of Operations Research, Springer, vol. 274(1), pages 395-423, March.
    11. Cai, Jun & Liu, Haiyan & Wang, Ruodu, 2017. "Pareto-optimal reinsurance arrangements under general model settings," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 24-37.
    12. Boonen, Tim J. & Liu, Fangda, 2022. "Insurance with heterogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    13. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    14. Wenjun Jiang & Jiandong Ren & Ričardas Zitikis, 2017. "Optimal Reinsurance Policies under the VaR Risk Measure When the Interests of Both the Cedent and the Reinsurer Are Taken into Account," Risks, MDPI, vol. 5(1), pages 1-22, February.
    15. Birghila, Corina & Pflug, Georg Ch., 2019. "Optimal XL-insurance under Wasserstein-type ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 30-43.
    16. Bahman Angoshtari & Virginia R. Young, 2020. "Optimal Insurance to Minimize the Probability of Ruin: Inverse Survival Function Formulation," Papers 2012.03798, arXiv.org.
    17. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2016. "The role of a representative reinsurer in optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 196-204.
    18. Tim J. Boonen, 2016. "Optimal Reinsurance with Heterogeneous Reference Probabilities," Risks, MDPI, vol. 4(3), pages 1-11, July.
    19. Cheung, Ka Chun & Phillip Yam, Sheung Chi & Yuen, Fei Lung & Zhang, Yiying, 2020. "Concave distortion risk minimizing reinsurance design under adverse selection," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 155-165.
    20. Liu, Haiyan & Mao, Tiantian, 2022. "Distributionally robust reinsurance with Value-at-Risk and Conditional Value-at-Risk," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 393-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3923-:d:1240532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.