IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3576-d1219937.html
   My bibliography  Save this article

Ornstein–Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting

Author

Listed:
  • Pece Trajanovski

    (Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia)

  • Petar Jolakoski

    (Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
    Brainster Next College, Vasil Gjorgov 19, 1000 Skopje, Macedonia)

  • Ljupco Kocarev

    (Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
    Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, P.O. Box 393, 1000 Skopje, Macedonia)

  • Trifce Sandev

    (Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
    Institute of Physics & Astronomy, University of Potsdam, D-14776 Potsdam-Golm, Germany
    Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, Macedonia)

Abstract

The Ornstein–Uhlenbeck (O-U) process with resetting is considered as the anomalous transport taking place on a three-dimensional comb. The three-dimensional comb is a comb inside a comb structure, consisting of backbones and fingers in the following geometrical correspondence x –backbone → y –fingers–backbone → z –fingers. Realisation of the O-U process on the three-dimensional comb leads to anomalous (non-Markovian) diffusion. This specific anomalous transport in the presence of resets results in non-equilibrium stationary states. Explicit analytical expressions for the mean values and the mean squared displacements along all three directions of the comb are obtained and verified numerically. The marginal probability density functions for each direction are obtained numerically by Monte Carlo simulation of a random transport described by a system of coupled Langevin equations for the comb geometry.

Suggested Citation

  • Pece Trajanovski & Petar Jolakoski & Ljupco Kocarev & Trifce Sandev, 2023. "Ornstein–Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting," Mathematics, MDPI, vol. 11(16), pages 1-28, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3576-:d:1219937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weiss, George H. & Havlin, Shlomo, 1986. "Some properties of a random walk on a comb structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 134(2), pages 474-482.
    2. Sandev, Trifce & Tomovski, Živorad & Dubbeldam, Johan L.A., 2011. "Generalized Langevin equation with a three parameter Mittag-Leffler noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3627-3636.
    3. Trifce Sandev & Viktor Domazetoski & Alexander Iomin & Ljupco Kocarev, 2021. "Diffusion–Advection Equations on a Comb: Resetting and Random Search," Mathematics, MDPI, vol. 9(3), pages 1-24, January.
    4. Trifce Sandev, 2017. "Generalized Langevin Equation and the Prabhakar Derivative," Mathematics, MDPI, vol. 5(4), pages 1-11, November.
    5. Renat T. Sibatov, 2020. "Fractal Generalization of the Scher–Montroll Model for Anomalous Transit-Time Dispersion in Disordered Solids," Mathematics, MDPI, vol. 8(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pottier, N., 1994. "Analytic study of a model of biased diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 208(1), pages 91-123.
    2. Arkhincheev, V.E., 2020. "The capture of particles on absorbing traps in the medium with anomalous diffusion: The effective fractional order diffusion equation and the slow temporal asymptotic of survival probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    3. Balakrishnan, V. & Van den Broeck, C., 1995. "Transport properties on a random comb," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 217(1), pages 1-21.
    4. Endre Csáki & Antónia Földes, 2022. "Strong Approximation of the Anisotropic Random Walk Revisited," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2879-2895, December.
    5. Baskin, Emmanuel & Iomin, Alexander, 2011. "Electrostatics in fractal geometry: Fractional calculus approach," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 335-341.
    6. Lini Qiu & Guitian He & Yun Peng & Huijun Lv & Yujie Tang, 2023. "Average amplitudes analysis for a phenomenological model under hydrodynamic interactions with periodic perturbation and multiplicative trichotomous noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-20, April.
    7. Dzhanoev, A.R. & Sokolov, I.M., 2018. "The effect of the junction model on the anomalous diffusion in the 3D comb structure," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 330-336.
    8. Iomin, A. & Zaburdaev, V. & Pfohl, T., 2016. "Reaction front propagation of actin polymerization in a comb-reaction system," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 115-122.
    9. Valerii M Sukhorukov & Jürgen Bereiter-Hahn, 2009. "Anomalous Diffusion Induced by Cristae Geometry in the Inner Mitochondrial Membrane," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-14, February.
    10. Lenzi, M.K. & Lenzi, E.K. & Guilherme, L.M.S. & Evangelista, L.R. & Ribeiro, H.V., 2022. "Transient anomalous diffusion in heterogeneous media with stochastic resetting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    11. Sandev, Trifce & Schulz, Alexander & Kantz, Holger & Iomin, Alexander, 2018. "Heterogeneous diffusion in comb and fractal grid structures," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 551-555.
    12. Csáki, Endre & Csörgo, Miklós & Földes, Antónia & Révész, Pál, 2011. "On the local time of random walk on the 2-dimensional comb," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1290-1314, June.
    13. Vladimir V. Uchaikin & Renat T. Sibatov & Dmitry N. Bezbatko, 2021. "On a Generalization of One-Dimensional Kinetics," Mathematics, MDPI, vol. 9(11), pages 1-18, May.
    14. Aslangul, C. & Pottier, N. & Chvosta, P., 1994. "Analytic study of a model of diffusion on a random comblike structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 203(3), pages 533-565.
    15. Trifce Sandev, 2017. "Generalized Langevin Equation and the Prabhakar Derivative," Mathematics, MDPI, vol. 5(4), pages 1-11, November.
    16. Ram K. Saxena & Zivorad Tomovski & Trifce Sandev, 2015. "Analytical Solution of Generalized Space-Time Fractional Cable Equation," Mathematics, MDPI, vol. 3(2), pages 1-18, April.
    17. Alexander Apelblat, 2020. "Differentiation of the Mittag-Leffler Functions with Respect to Parameters in the Laplace Transform Approach," Mathematics, MDPI, vol. 8(5), pages 1-22, April.
    18. Endre Csáki & Antónia Földes, 2022. "On the Local Time of the Half-Plane Half-Comb Walk," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1247-1261, June.
    19. Endre Csáki & Antónia Földes, 2020. "Random Walks on Comb-Type Subsets of $$\mathbb {Z}^2$$ Z 2," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2233-2257, December.
    20. Trifce Sandev & Irina Petreska & Ervin K. Lenzi, 2016. "Effective Potential from the Generalized Time-Dependent Schrödinger Equation," Mathematics, MDPI, vol. 4(4), pages 1-9, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3576-:d:1219937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.