IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i7p1183-d787076.html
   My bibliography  Save this article

Mathematical Model and Optimization Methods of Wide-Scale Pooled Sample Testing for COVID-19

Author

Listed:
  • De Zhou

    (School of Civil Engineering, Central South University, Changsha 410017, China)

  • Man Zhou

    (School of Civil Engineering, Wuhan University, Wuhan 430072, China)

Abstract

Currently, coronavirus disease 2019 (COVID-19) has become the most severe infectious disease affecting the world, which has spread around the world to more than 200 countries in 2020. Until the number of COVID-19 vaccines is insufficient, nucleic acid testing is considered as an effective way to screen virus carriers and control the spread of the virus. Considering that the medical resources and infection rates are different across various countries and regions, if all infected areas adopt the traditional individual nucleic acid testing method, the workload will be heavy and time-consuming. Therefore, this will not lead to the control of the pandemic. After Wuhan completed a citywide nucleic acid testing in May 2020, China basically controlled the spread of COVID-19 and entered the post-epidemic period. Since then, although some cities in China, such as Qingdao, Xinjiang, Beijing, and Dalian, have experienced a local epidemic resurgence, the pandemic was quickly suppressed through wide-scale pooled nucleic acid testing methods. Combined with the successful experience of mass nucleic acid testing in China, this study introduces two main pooled testing methods used in two cities with a population of more than ten million people, Wuhan’s “five-in-one” and Qingdao’s “ten-in-one” rapid pooled testing methods. This study proposes an improved method for optimising the second round of “ten-in-one” pooled testing, known as “the pentagram mini-pooled testing method”, which speeds up the testing process (as a result of reducing the numbers of testing by 40%) and significantly reduces the cost. Qingdao’s optimised “ten-in-one” pooled testing method quickly screens out the infections by running fewer testing samples. This study also mathematically examines the probabilistic principles and applicability conditions for pooled testing of COVID-19. Herein, the study theoretically determines the optimal number of samples that could successfully be combined into a pool under different infection rates. Then, it quantitatively discusses the applicability and principles for choosing the pooled testing instead of individual testing. Overall, this research offers a reference for other countries with different infection rates to help them in implementing the mass testing for COVID-19 to reduce the spread of coronavirus.

Suggested Citation

  • De Zhou & Man Zhou, 2022. "Mathematical Model and Optimization Methods of Wide-Scale Pooled Sample Testing for COVID-19," Mathematics, MDPI, vol. 10(7), pages 1-16, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1183-:d:787076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/7/1183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/7/1183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leon Mutesa & Pacifique Ndishimye & Yvan Butera & Jacob Souopgui & Annette Uwineza & Robert Rutayisire & Ella Larissa Ndoricimpaye & Emile Musoni & Nadine Rujeni & Thierry Nyatanyi & Edouard Ntagwabir, 2021. "A pooled testing strategy for identifying SARS-CoV-2 at low prevalence," Nature, Nature, vol. 589(7841), pages 276-280, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huberts, Nick F.D. & Thijssen, Jacco J.J., 2023. "Optimal timing of non-pharmaceutical interventions during an epidemic," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1366-1389.
    2. Md S. Warasi & Laura L. Hungerford & Kevin Lahmers, 2022. "Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 713-727, December.
    3. David Hong & Rounak Dey & Xihong Lin & Brian Cleary & Edgar Dobriban, 2022. "Group testing via hypergraph factorization applied to COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Pritha Guha, 2022. "Application of Pooled Testing Methodologies in Tackling the COVID-19 Pandemic," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 47(1), pages 7-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1183-:d:787076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.