IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4509-d987696.html
   My bibliography  Save this article

Orthogonal Learning Rosenbrock’s Direct Rotation with the Gazelle Optimization Algorithm for Global Optimization

Author

Listed:
  • Laith Abualigah

    (Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan)

  • Ali Diabat

    (Division of Engineering, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi 129188, United Arab Emirates
    Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA)

  • Raed Abu Zitar

    (Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, Abu Dhabi 38044, United Arab Emirates)

Abstract

An efficient optimization method is needed to address complicated problems and find optimal solutions. The gazelle optimization algorithm (GOA) is a global stochastic optimizer that is straightforward to comprehend and has powerful search capabilities. Nevertheless, the GOA is unsuitable for addressing multimodal, hybrid functions, and data mining problems. Therefore, the current paper proposes the orthogonal learning (OL) method with Rosenbrock’s direct rotation strategy to improve the GOA and sustain the solution variety (IGOA). We performed comprehensive experiments based on various functions, including 23 classical and IEEE CEC2017 problems. Moreover, eight data clustering problems taken from the UCI repository were tested to verify the proposed method’s performance further. The IGOA was compared with several other proposed meta-heuristic algorithms. Moreover, the Wilcoxon signed-rank test further assessed the experimental results to conduct more systematic data analyses. The IGOA surpassed other comparative optimizers in terms of convergence speed and precision. The empirical results show that the proposed IGOA achieved better outcomes than the basic GOA and other state-of-the-art methods and performed better in terms of solution quality.

Suggested Citation

  • Laith Abualigah & Ali Diabat & Raed Abu Zitar, 2022. "Orthogonal Learning Rosenbrock’s Direct Rotation with the Gazelle Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 10(23), pages 1-42, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4509-:d:987696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Huiling & Wang, Mingjing & Zhao, Xuehua, 2020. "A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    2. Mohammad H. Nadimi-Shahraki & Shokooh Taghian & Seyedali Mirjalili & Laith Abualigah, 2022. "Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
    3. Abdelaziz El Shinawi & Rehab Ali Ibrahim & Laith Abualigah & Martina Zelenakova & Mohamed Abd Elaziz, 2021. "Enhanced Adaptive Neuro-Fuzzy Inference System Using Reptile Search Algorithm for Relating Swelling Potentiality Using Index Geotechnical Properties: A Case Study at El Sherouk City, Egypt," Mathematics, MDPI, vol. 9(24), pages 1-13, December.
    4. Mohamed Abd Elaziz & Laith Abualigah & Dalia Yousri & Diego Oliva & Mohammed A. A. Al-Qaness & Mohammad H. Nadimi-Shahraki & Ahmed A. Ewees & Songfeng Lu & Rehab Ali Ibrahim, 2021. "Boosting Atomic Orbit Search Using Dynamic-Based Learning for Feature Selection," Mathematics, MDPI, vol. 9(21), pages 1-17, November.
    5. Shuang Wang & Abdelazim G. Hussien & Heming Jia & Laith Abualigah & Rong Zheng, 2022. "Enhanced Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(10), pages 1-32, May.
    6. Ibrahim Attiya & Laith Abualigah & Doaa Elsadek & Samia Allaoua Chelloug & Mohamed Abd Elaziz, 2022. "An Intelligent Chimp Optimizer for Scheduling of IoT Application Tasks in Fog Computing," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    7. Ibrahim Attiya & Laith Abualigah & Samah Alshathri & Doaa Elsadek & Mohamed Abd Elaziz, 2022. "Dynamic Jellyfish Search Algorithm Based on Simulated Annealing and Disruption Operators for Global Optimization with Applications to Cloud Task Scheduling," Mathematics, MDPI, vol. 10(11), pages 1-23, June.
    8. Changsheng Wen & Heming Jia & Di Wu & Honghua Rao & Shanglong Li & Qingxin Liu & Laith Abualigah, 2022. "Modified Remora Optimization Algorithm with Multistrategies for Global Optimization Problem," Mathematics, MDPI, vol. 10(19), pages 1-36, October.
    9. Julian Miller & Lukas Trümper & Christian Terboven & Matthias S. Müller, 2021. "A Theoretical Model for Global Optimization of Parallel Algorithms," Mathematics, MDPI, vol. 9(14), pages 1-14, July.
    10. Qingxin Liu & Ni Li & Heming Jia & Qi Qi & Laith Abualigah & Yuxiang Liu, 2022. "A Hybrid Arithmetic Optimization and Golden Sine Algorithm for Solving Industrial Engineering Design Problems," Mathematics, MDPI, vol. 10(9), pages 1-30, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Yang & Jiale Xiong & Yen-Lin Chen & Por Lip Yee & Chin Soon Ku & Manoochehr Babanezhad, 2023. "Improved Golden Jackal Optimization for Optimal Allocation and Scheduling of Wind Turbine and Electric Vehicles Parking Lots in Electrical Distribution Network Using Rosenbrock’s Direct Rotation Strat," Mathematics, MDPI, vol. 11(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Honghua Rao & Heming Jia & Di Wu & Changsheng Wen & Shanglong Li & Qingxin Liu & Laith Abualigah, 2022. "A Modified Group Teaching Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(20), pages 1-36, October.
    2. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Khalid Mehmood Cheema & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdullah Ahmed Azhari, 2022. "Dwarf Mongoose Optimization Metaheuristics for Autoregressive Exogenous Model Identification," Mathematics, MDPI, vol. 10(20), pages 1-21, October.
    3. Jinhua You & Heming Jia & Di Wu & Honghua Rao & Changsheng Wen & Qingxin Liu & Laith Abualigah, 2023. "Modified Artificial Gorilla Troop Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    4. Di Wu & Honghua Rao & Changsheng Wen & Heming Jia & Qingxin Liu & Laith Abualigah, 2022. "Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(22), pages 1-41, November.
    5. Ahmed A. Ewees & Fatma H. Ismail & Rania M. Ghoniem & Marwa A. Gaheen, 2022. "Enhanced Marine Predators Algorithm for Solving Global Optimization and Feature Selection Problems," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    6. Rizk M. Rizk-Allah & Hatem Abdulkader & Samah S. Abd Elatif & Diego Oliva & Guillermo Sosa-Gómez & Václav Snášel, 2023. "On the Cryptanalysis of a Simplified AES Using a Hybrid Binary Grey Wolf Optimization," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    7. Jian Zhao & Bochen Zhang & Xiwang Guo & Liang Qi & Zhiwu Li, 2022. "Self-Adapting Spherical Search Algorithm with Differential Evolution for Global Optimization," Mathematics, MDPI, vol. 10(23), pages 1-31, November.
    8. Laith Abualigah & Ali Diabat & Davor Svetinovic & Mohamed Abd Elaziz, 2023. "Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2693-2728, August.
    9. Prabhdeep Singh & Rajbir Kaur & Junaid Rashid & Sapna Juneja & Gaurav Dhiman & Jungeun Kim & Mariya Ouaissa, 2022. "A Fog-Cluster Based Load-Balancing Technique," Sustainability, MDPI, vol. 14(13), pages 1-14, June.
    10. Changsheng Wen & Heming Jia & Di Wu & Honghua Rao & Shanglong Li & Qingxin Liu & Laith Abualigah, 2022. "Modified Remora Optimization Algorithm with Multistrategies for Global Optimization Problem," Mathematics, MDPI, vol. 10(19), pages 1-36, October.
    11. Raj, Saurav & Mahapatra, Sheila & Babu, Rohit & Verma, Sumit, 2023. "Hybrid intelligence strategy for techno-economic reactive power dispatch approach to ensure system security," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    12. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    13. Ren, Hao & Li, Jun & Chen, Huiling & Li, ChenYang, 2021. "Adaptive levy-assisted salp swarm algorithm: Analysis and optimization case studies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 380-409.
    14. Wangwang Yan & Jing Ba & Taihua Xu & Hualong Yu & Jinlong Shi & Bin Han, 2022. "Beam-Influenced Attribute Selector for Producing Stable Reduct," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    15. Fabian Riquelme & Elizabeth Montero & Leslie Pérez-Cáceres & Nicolás Rojas-Morales, 2022. "A Track-Based Conference Scheduling Problem," Mathematics, MDPI, vol. 10(21), pages 1-25, October.
    16. Ibrahim Attiya & Laith Abualigah & Samah Alshathri & Doaa Elsadek & Mohamed Abd Elaziz, 2022. "Dynamic Jellyfish Search Algorithm Based on Simulated Annealing and Disruption Operators for Global Optimization with Applications to Cloud Task Scheduling," Mathematics, MDPI, vol. 10(11), pages 1-23, June.
    17. Bushra Shakir Mahmood & Nazar K. Hussein & Mansourah Aljohani & Mohammed Qaraad, 2023. "A Modified Gradient Search Rule Based on the Quasi-Newton Method and a New Local Search Technique to Improve the Gradient-Based Algorithm: Solar Photovoltaic Parameter Extraction," Mathematics, MDPI, vol. 11(19), pages 1-40, October.
    18. Akram Belazi & Héctor Migallón & Daniel Gónzalez-Sánchez & Jorge Gónzalez-García & Antonio Jimeno-Morenilla & José-Luis Sánchez-Romero, 2022. "Enhanced Parallel Sine Cosine Algorithm for Constrained and Unconstrained Optimization," Mathematics, MDPI, vol. 10(7), pages 1-47, April.
    19. Lamiaa M. El Bakrawy & Nadjem Bailek & Laith Abualigah & Shabana Urooj & Abeer S. Desuky, 2022. "Feature Selection Based on Mud Ring Algorithm for Improving Survival Prediction of Children Undergoing Hematopoietic Stem-Cell Transplantation," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    20. Chen, Chengcheng & Wang, Xianchang & Yu, Helong & Wang, Mingjing & Chen, Huiling, 2021. "Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 291-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4509-:d:987696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.