IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3709-d938145.html
   My bibliography  Save this article

Stability Evaluation of Medium Soft Soil Pile Slope Based on Limit Equilibrium Method and Finite Element Method

Author

Listed:
  • Xiaoyan Du

    (Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
    State Key Laboratory for Track Technology of High-speed Railway, Beijing 100081, China)

  • Jinfei Chai

    (Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
    State Key Laboratory for Track Technology of High-speed Railway, Beijing 100081, China)

Abstract

The stability of an open-pit slope is an extremely important factor related to the safe production of an open-pit mine. It is the first safety technical problem encountered and should be solved in the process of mine design and production. By the means of an engineering geology and hydrogeological investigation of the waste dump area of the Nayuan open-pit coal mine and numerical simulation research, this paper analyzes and studies the slope stability of the stope and waste dump of the Nayuan open-pit coal mine in detail and puts forward measures such as slope prevention and automatic monitoring to achieve the goal of protecting the slope of the stope and waste dump and the surrounding environment. The main research results are as follows: (1) The geotechnical physical and mechanical indexes of stope and waste dump are collected and analyzed, and the geotechnical mechanical indexes in this report were determined, which basically meet the requirements of slope stability analysis. (2) The limit equilibrium method and finite element method were used to analyze and evaluate the current slope stability of the Nayuan open-pit coal mine. It was concluded that the foundation of the waste dump is basically stable, and the potential landslide modes of the slope are arc-shaped sliding surface and arc-shaped straight-line sliding surface. The numerical simulation and checking results showed that the current stope and waste dump slope are stable. (3) According to the analysis and evaluation results of slope stability, feasible slope prevention measures are put forward. The research results are of great significance to the safety of important facilities in open-pit mines and provide a basis for the design and safety implementation of open-pit slope engineering.

Suggested Citation

  • Xiaoyan Du & Jinfei Chai, 2022. "Stability Evaluation of Medium Soft Soil Pile Slope Based on Limit Equilibrium Method and Finite Element Method," Mathematics, MDPI, vol. 10(19), pages 1-32, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3709-:d:938145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Jing, 2021. "Analysis of commercial land leasing of the district governments of Beijing in China," Land Use Policy, Elsevier, vol. 100(C).
    2. Jing Cheng, 2020. "Data Analysis of the Factors Influencing the Industrial Land Leasing in Shanghai Based on Mathematical Models," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, April.
    3. Jing Cheng, 2021. "Mathematical Models and Data Analysis of Residential Land Leasing Behavior of District Governments of Beijing in China," Mathematics, MDPI, vol. 9(18), pages 1-14, September.
    4. J. F. Chai, 2020. "Research on Multijoint Rock Failure Mechanism Based on Moment Tensor Theory," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-17, August.
    5. Cheng, Jing, 2020. "Analyzing the factors influencing the choice of the government on leasing different types of land uses: Evidence from Shanghai of China," Land Use Policy, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinfei Chai, 2021. "Research on Dynamic Response Characteristics for Basement Structure of Heavy Haul Railway Tunnel with Defects," Mathematics, MDPI, vol. 9(22), pages 1-23, November.
    2. Linfang Shen & Kuoyu Liu & Jinfei Chai & Weibin Ma & Xiaoxiong Guo & Yao Li & Peng Zhao & Boying Liu, 2022. "Research on the Mathematical Model for Optimal Allocation of Human Resources in the Operation and Maintenance Units of a Heavy Haul Railway," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    3. Cheng, Jing, 2022. "Analysis of the factors influencing industrial land leasing in Beijing of China based on the district-level data," Land Use Policy, Elsevier, vol. 122(C).
    4. Pei Yin & Miaojuan Peng, 2023. "Station Layout Optimization and Route Selection of Urban Rail Transit Planning: A Case Study of Shanghai Pudong International Airport," Mathematics, MDPI, vol. 11(6), pages 1-29, March.
    5. Li Li & Jiahui Yu & Hang Cheng & Miaojuan Peng, 2021. "A Smart Helmet-Based PLS-BPNN Error Compensation Model for Infrared Body Temperature Measurement of Construction Workers during COVID-19," Mathematics, MDPI, vol. 9(21), pages 1-20, November.
    6. Fengxin Sun & Jufeng Wang & Xiang Kong & Rongjun Cheng, 2021. "A Dimension Splitting Generalized Interpolating Element-Free Galerkin Method for the Singularly Perturbed Steady Convection–Diffusion–Reaction Problems," Mathematics, MDPI, vol. 9(19), pages 1-15, October.
    7. Jing Cheng, 2021. "Mathematical Models and Data Analysis of Residential Land Leasing Behavior of District Governments of Beijing in China," Mathematics, MDPI, vol. 9(18), pages 1-14, September.
    8. Jing Cheng & Xiaowei Luo, 2022. "Analyzing the Land Leasing Behavior of the Government of Beijing, China, via the Multinomial Logit Model," Land, MDPI, vol. 11(3), pages 1-14, March.
    9. Jufeng Wang & Fengxin Sun & Rongjun Cheng, 2021. "A Dimension Splitting-Interpolating Moving Least Squares (DS-IMLS) Method with Nonsingular Weight Functions," Mathematics, MDPI, vol. 9(19), pages 1-22, September.
    10. Zhijuan Meng & Xiaofei Chi & Lidong Ma, 2022. "A Hybrid Interpolating Meshless Method for 3D Advection–Diffusion Problems," Mathematics, MDPI, vol. 10(13), pages 1-21, June.
    11. Pei Yin & Jing Cheng & Miaojuan Peng, 2022. "Analyzing the Passenger Flow of Urban Rail Transit Stations by Using Entropy Weight-Grey Correlation Model: A Case Study of Shanghai in China," Mathematics, MDPI, vol. 10(19), pages 1-23, September.
    12. Cheng, Jing, 2021. "Analysis of commercial land leasing of the district governments of Beijing in China," Land Use Policy, Elsevier, vol. 100(C).
    13. Heng Cheng & Zebin Xing & Yan Liu, 2023. "The Improved Element-Free Galerkin Method for 3D Steady Convection-Diffusion-Reaction Problems with Variable Coefficients," Mathematics, MDPI, vol. 11(3), pages 1-19, February.
    14. Zhijuan Meng & Yanan Fang & Lidong Ma, 2021. "A Method for Rapid Prediction of Edge Defects in Cold Roll Forming Process," Mathematics, MDPI, vol. 9(16), pages 1-11, August.
    15. Batara Surya & Agus Salim & Hernita Hernita & Seri Suriani & Firman Menne & Emil Salim Rasyidi, 2021. "Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia," Land, MDPI, vol. 10(6), pages 1-31, May.
    16. Jiao, Man & Xu, Hengzhou, 2022. "How do Collective Operating Construction Land (COCL) Transactions affect rural residents’ property income? Evidence from rural Deqing County, China," Land Use Policy, Elsevier, vol. 113(C).
    17. Wei, Jia & Wen, Jun & Wang, Xiao-Yang & Ma, Jie & Chang, Chun-Ping, 2023. "Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies," Energy Economics, Elsevier, vol. 121(C).
    18. Yumin Cheng, 2022. "Preface to the Special Issue on “Numerical Computation, Data Analysis and Software in Mathematics and Engineering”," Mathematics, MDPI, vol. 10(13), pages 1-5, June.
    19. Wenbin Huang, 2022. "Government Land Regulations and Housing Supply Elasticity in Urban China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 30(4), pages 122-148, July.
    20. Wang, Hongzheng & Lu, Xinhai & Feng, Lianyue & Yuan, Zhihang & Tang, Yifeng & Jiang, Xu, 2023. "Dynamic change and evolutionary mechanism of city land leasing network—Taking the Yangtze River Delta region in China as an example," Land Use Policy, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3709-:d:938145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.