IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2659-d874516.html
   My bibliography  Save this article

Support Vector Machine with Robust Low-Rank Learning for Multi-Label Classification Problems in the Steelmaking Process

Author

Listed:
  • Qiang Li

    (Liaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry, Shenyang 110819, China)

  • Chang Liu

    (Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China)

  • Qingxin Guo

    (National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China)

Abstract

In this paper, we present a novel support vector machine learning method for multi-label classification in the steelmaking process. The steelmaking process involves complicated physicochemical reactions. The end-point temperature is the key to the steelmaking process. According to the initial furnace condition information, the end-point temperature can be predicted using a data-driven method. Based on the setting value of the temperature before tapping, multi-scale predicted errors of the end-point temperature can be calculated and divided into different ranges. The quality evaluation problem can be attributed to the multi-label classification problem of molten steel quality. To solve the classification problem, considering that it is difficult to capture nonlinear relationships between the input and output in linear models, we propose a novel support vector machine with robust low-rank learning, which has the characteristics of class imbalance without label correlations; a low-rank constraint is used to deal with high-order label correlations in low-dimensional space. Furthermore, we derive an accelerated proximal gradient algorithm and then extend it to handle the nonlinear multi-label classifiers. To validate the proposed model, experiments are conducted with real data from a practical steelmaking problem. The results show that the proposed model can effectively solve the multi-label classification problem in industrial production. To evaluate the proposed approach as a general classification approach, we test it on multi-label classification benchmark datasets. The results illustrate that the proposed approach performs better than other state-of-the-art approaches across different scenarios.

Suggested Citation

  • Qiang Li & Chang Liu & Qingxin Guo, 2022. "Support Vector Machine with Robust Low-Rank Learning for Multi-Label Classification Problems in the Steelmaking Process," Mathematics, MDPI, vol. 10(15), pages 1-15, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2659-:d:874516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    3. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    4. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    5. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    6. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    7. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    8. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    9. Avagyan, Vahe & Alonso Fernández, Andrés Modesto & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    11. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    12. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    13. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    14. Michał Kos & Małgorzata Bogdan, 2020. "On the Asymptotic Properties of SLOPE," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 499-532, August.
    15. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    16. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    17. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    18. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    19. Stephan Brunow & Stefanie Lösch & Ostap Okhrin, 2022. "Labor market tightness and individual wage growth: evidence from Germany," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 56(1), pages 1-21, December.
    20. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2659-:d:874516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.