IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i8p1652-d1725357.html
   My bibliography  Save this article

Blue–Green Infrastructure Network Planning in Urban Small Watersheds Based on Water Balance

Author

Listed:
  • Xin Chen

    (Department of Landscape Architecture, School of Architecture, Southeast University, Nanjing 210000, China)

  • Xiaojun Wang

    (Department of Landscape Architecture, School of Architecture, Southeast University, Nanjing 210000, China)

Abstract

The rapid expansion of urbanization and inadequate planning have triggered a water balance crisis in many cities, manifesting as both the need for artificial lake supplementation and frequent urban flooding. Using the Xuanwu Lake watershed in Nanjing as a case study, this research aims to optimize the Blue–Green Infrastructure (BGI) network to maximize rainfall utilization within the watershed. The ultimate goal is to restore natural water balance processes and reduce reliance on artificial supplementation while mitigating urban flood risks. First, the Soil Conservation Service Curve Number (SCS–CN) model is employed to estimate the maximum potential of natural convergent flow within the watershed. Second, drawing on landscape connectivity theory, a multi-level BGI network optimization model is developed by integrating the Minimum Cumulative Resistance (MCR) model and the gravity model, incorporating both hydrological connectivity and flood safety considerations. Third, a water balance model based on the Storm Water Management Model (SWMM) framework and empirical formulas is constructed and coupled with the network optimization model to simulate and evaluate water budget performance under optimized scenarios. The results indicate that the optimized scheme can reduce artificial supplementation to Xuanwu Lake by 62.2% in June, while also ensuring effective supplementation throughout the year. Annual runoff entering the lake reaches 13.25 million cubic meters, meeting approximately 13% of the current annual supplementation demand. Moreover, under a 100-year return period flood scenario, the optimized network reduces total watershed flood volume by 35% compared to pre-optimization conditions, with flood-prone units experiencing reductions exceeding 50%. These findings underscore the optimized BGI network scheme’s capacity to reallocate rainwater resources efficiently, promoting a transition in urban water governance from an “engineering-dominated” approach to an “ecology-oriented and self-regulating” paradigm.

Suggested Citation

  • Xin Chen & Xiaojun Wang, 2025. "Blue–Green Infrastructure Network Planning in Urban Small Watersheds Based on Water Balance," Land, MDPI, vol. 14(8), pages 1-31, August.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1652-:d:1725357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/8/1652/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/8/1652/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao-Jun Wang & Xiao Wei & Xin Chen, 2022. "Morphological Suitability Analysis of Urban Greenspaces with Rivers: A Case Study of the Lixiahe Riverine Area," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    2. Xifan Chen & Lihua Xu & Rusong Zhu & Qiwei Ma & Yijun Shi & Zhangwei Lu, 2022. "Changes and Characteristics of Green Infrastructure Network Based on Spatio-Temporal Priority," Land, MDPI, vol. 11(6), pages 1-17, June.
    3. Junfei Chen & Juan Ji & Huimin Wang & Menghua Deng & Cong Yu, 2020. "Risk Assessment of Urban Rainstorm Disaster Based on Multi-Layer Weighted Principal Component Analysis: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 17(15), pages 1-19, July.
    4. Xuemin Shi & Mingzhou Qin & Bin Li & Dan Zhang, 2021. "A Framework for Optimizing Green Infrastructure Networks Based on Landscape Connectivity and Ecosystem Services," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    5. Liqing Zhu & Chi Gao & Mianzhi Wu & Ruiming Zhu, 2025. "Integrating Blue–Green Infrastructure with Gray Infrastructure for Climate-Resilient Surface Water Flood Management in the Plain River Networks," Land, MDPI, vol. 14(3), pages 1-29, March.
    6. Elizabeth Christenson & Mark Elliott & Ovik Banerjee & Laura Hamrick & Jamie Bartram, 2014. "Climate-Related Hazards: A Method for Global Assessment of Urban and Rural Population Exposure to Cyclones, Droughts, and Floods," IJERPH, MDPI, vol. 11(2), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    2. Laura Melelli, 2019. "“Perugia Upside-Down”: A Multimedia Exhibition in Umbria (Central Italy) for Improving Geoheritage and Geotourism in Urban Areas," Resources, MDPI, vol. 8(3), pages 1-22, August.
    3. Kristina Lindvall & John Kinsman & Atakelti Abraha & Abdirisak Dalmar & Mohamed Farah Abdullahi & Hagos Godefay & Lelekoitien Lerenten Thomas & Mohamed Osman Mohamoud & Bile Khalif Mohamud & Jairus Mu, 2020. "Health Status and Health Care Needs of Drought-Related Migrants in the Horn of Africa—A Qualitative Investigation," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    4. Xichen Ge & Liang Sun & Jiongzhen Chen & Shuangrong Cai, 2022. "Land Utilization, Landscape Pattern, and Ecological Efficiency: An Empirical Analysis of Discrimination and Overlap from Suining, China," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    5. Tauisi Taupo & Harold Cuffe & Ilan Noy, 2018. "Household vulnerability on the frontline of climate change: the Pacific atoll nation of Tuvalu," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 705-739, October.
    6. Hao Li & Hongyu Chen & Minghao Wu & Kai Zhou & Xiang Zhang & Zhicheng Liu, 2022. "A Dynamic Evaluation Method of Urban Ecological Networks Combining Graphab and the FLUS Model," Land, MDPI, vol. 11(12), pages 1-15, December.
    7. Yang Li & Xiaotong Zhang & Xiuxiu Gao, 2022. "An Evaluation of the Coupling Coordination Degree of an Urban Economy–Society–Environment System Based on a Multi-Scenario Analysis: The Case of Chengde City in China," Sustainability, MDPI, vol. 14(11), pages 1-16, June.
    8. Wei Xu & Li Zhuo & Jing Zheng & Yi Ge & Zhihui Gu & Yugang Tian, 2016. "Assessment of the Casualty Risk of Multiple Meteorological Hazards in China," IJERPH, MDPI, vol. 13(2), pages 1-12, February.
    9. Kythreotis, Andrew P. & Hannaford, Matthew & Howarth, Candice & Bosworth, Gary, 2024. "Translating climate risk assessments into more effective adaptation decision-making: the importance of social and political aspects of place-based climate risk," LSE Research Online Documents on Economics 122155, London School of Economics and Political Science, LSE Library.
    10. Qidi Dong & Linjia Wu & Jun Cai & Di Li & Qibing Chen, 2022. "Construction of Ecological and Recreation Patterns in Rural Landscape Space: A Case Study of the Dujiangyan Irrigation District in Chengdu, China," Land, MDPI, vol. 11(3), pages 1-21, March.
    11. Mingyuan Chang & Longyang Huang & Tianlin Zhai & Jiawei Zhu & Yuanbo Ma & Ling Li & Chenchen Zhao, 2023. "A Challenge of Sustainable Urbanization: Mapping the Equity of Urban Public Facilities in Multiple Dimensions in Zhengzhou, China," Land, MDPI, vol. 12(8), pages 1-22, August.
    12. Juscidalva Rodrigues de Almeida & Reginaldo de Oliveira Nunes & Teresa Dias, 2021. "People Prefer Greener Corridors: Evidence from Linking the Patterns of Tree and Shrub Diversity and Users’ Preferences in Lisbon’s Green Corridors," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    13. Anastasia Nikologianni & Alessandro Betta & Alessandro Gretter, 2022. "Contribution of Conceptual-Drawing Methods to Raise Awareness on Landscape Connectivity: Socio-Environmental Analysis in the Regional Context of Trentino (Italy)," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    14. Haixia Zhao & Binjie Gu & Jinding Fan & Junqi Wang & Liancong Luo, 2023. "Socioeconomic Factors Influence the Spatial and Temporal Distribution of Blue–Green Infrastructure Demand: A Case of Nanjing City," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    15. Menghua Deng & Zhiqi Li & Feifei Tao, 2022. "Rainstorm Disaster Risk Assessment and Influence Factors Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    16. Júlia Alves Menezes & Ana Paula Madureira & Rhavena Barbosa dos Santos & Isabela de Brito Duval & Pedro Regoto & Carina Margonari & Martha Macêdo de Lima Barata & Ulisses Confalonieri, 2021. "Analyzing Spatial Patterns of Health Vulnerability to Drought in the Brazilian Semiarid Region," IJERPH, MDPI, vol. 18(12), pages 1-19, June.
    17. Eda Ustaoglu & Gloria Ortega Lopez & Alejandro Gutierrez-Alcoba, 2025. "Building composite indicators for the territorial quality of life assessment in European regions: combining data reduction and alternative weighting techniques," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 6025-6063, March.
    18. Federica Isola & Sabrina Lai & Federica Leone & Corrado Zoppi, 2022. "Strengthening a Regional Green Infrastructure through Improved Multifunctionality and Connectedness: Policy Suggestions from Sardinia, Italy," Sustainability, MDPI, vol. 14(15), pages 1-22, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1652-:d:1725357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.