Author
Listed:
- Jukyeong Choi
(Department of Forestry and Environmental Systems, Kangwon National University, Chuncheon 24341, Republic of Korea)
- Youngjo Yun
(Department of Ecological Landscape Architecture Design, Kangwon National University, Chuncheon 24341, Republic of Korea)
- Heemun Chae
(Division of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea)
Abstract
Forest fires pose significant threats to ecosystems, economies, and human lives. However, existing forest fire risk assessments are over-reliant on field data and expert-derived indices. Here, we assessed the nationwide forest fire risk in South Korea using a dataset of 2289 and 4578 fire and non-fire events between 2020 and 2023. Twelve remote sensing-based environmental variables were exclusively derived from Google Earth Engine, including climate, vegetation, topographic, and socio-environmental factors. After removing the snow equivalent variable owing to high collinearity, we trained three machine learning models: random forest, XGBoost, and artificial neural network, and evaluated their ability to predict forest fire risks. XGBoost showed the best performance (F1 = 0.511; AUC = 0.76), followed by random forest (F1 = 0.496) and artificial neural network (F1 = 0.468). DEM, NDVI, and population density consistently ranked as the most influential predictors. Spatial prediction maps from each model revealed consistent high-risk areas with some local prediction differences. These findings demonstrate the potential of integrating cloud-based remote sensing with machine learning for large-scale, high-resolution forest fire risk modeling and have implications for early warning systems and effective fire management in vulnerable regions. Future predictions can be improved by incorporating seasonal, real-time meteorological, and human activity data.
Suggested Citation
Jukyeong Choi & Youngjo Yun & Heemun Chae, 2025.
"Forest Fire Risk Prediction in South Korea Using Google Earth Engine: Comparison of Machine Learning Models,"
Land, MDPI, vol. 14(6), pages 1-16, May.
Handle:
RePEc:gam:jlands:v:14:y:2025:i:6:p:1155-:d:1665398
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1155-:d:1665398. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.