IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i5p1090-d1658162.html
   My bibliography  Save this article

Effects of Three Fertilizers on Improving Soil Characteristics and Growth Performance of Mahonia fortunei (Lindl.) Fedde in Rocky Desertification Areas

Author

Listed:
  • Xiuwen Fang

    (School of Civil Engineering, Southeast University, Nanjing 211189, China
    Academy of Forestry, Guangxi Zhuang Autonomous Region, Nanning 530002, China)

  • Yue Sun

    (School of Civil Engineering, Southeast University, Nanjing 211189, China)

  • Xiangxiang Huang

    (School of Civil Engineering, Southeast University, Nanjing 211189, China)

  • Bo Pan

    (Academy of Forestry, Guangxi Zhuang Autonomous Region, Nanning 530002, China
    Guangxi Forest New Fertilizer Research and Development Center, Nanning 530002, China)

  • Haiying Gao

    (School of Civil Engineering, Southeast University, Nanjing 211189, China)

  • Zhishui Liang

    (School of Civil Engineering, Southeast University, Nanjing 211189, China
    Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China
    National and Local Unified Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University, Nanjing 211189, China)

Abstract

Rocky desertification, a severe form of land degradation in tropical and subtropical regions driven by vegetation loss and soil erosion, poses significant ecological and economic challenges. Field trials in Fengshan County, Guangxi, China, evaluated the efficacy of NPK compound fertilizers, slow-release fertilizers, and bio-organic fertilizers on soil rehabilitation, microbial diversity, and the growth of Mahonia fortunei, a key species for ecological restoration and understory cash crop cultivation. The results demonstrated the bio-organic fertilizer’s superiority in soil regeneration, increasing organic matter by 30.4% (Bolin), 15.73% (Longlai), and 21.83% (Longlei) compared to NPK compound fertilizers, alongside elevating the total nitrogen (reaching 19.4 g/kg in Bolin) and phosphorus (85.45% higher in Bolin). Bio-organic fertilizer increased enzyme activities by 27–202% and enhanced microbial diversity, notably Proteobacteria and Actinobacteria. Slow-release fertilizers maximized micronutrient availability (e.g., Cu increased by 151.65% in Bolin) and improved plant growth, achieving peak Mahonia fortunei (Lindl.) Fedde height (3.62 cm, increasing 9.04%) and ground diameter (4.5 cm, increasing 18.42%) in Longlei compared to NPK compound fertilizers. Regional variability highlighted the bio-organic fertilizer’s dominance in soil fertility metrics, while slow-release formulations excelled in micronutrient enrichment and plant performance. NPK compound fertilizers exhibited the lowest efficacy, potentially exacerbating soil degradation. This study advocates integrating bio-organic fertilizers for soil regeneration with targeted slow-release applications for crop productivity, particularly in understory cash crop systems. Such a dual approach bridges ecological restoration with economic resilience in karst ecosystems, offering scalable solutions for global rocky desertification mitigation.

Suggested Citation

  • Xiuwen Fang & Yue Sun & Xiangxiang Huang & Bo Pan & Haiying Gao & Zhishui Liang, 2025. "Effects of Three Fertilizers on Improving Soil Characteristics and Growth Performance of Mahonia fortunei (Lindl.) Fedde in Rocky Desertification Areas," Land, MDPI, vol. 14(5), pages 1-19, May.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:1090-:d:1658162
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/5/1090/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/5/1090/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pingping Fang & David Abler & Guanghua Lin & Ali Sher & Quan Quan, 2021. "Substituting Organic Fertilizer for Chemical Fertilizer: Evidence from Apple Growers in China," Land, MDPI, vol. 10(8), pages 1-24, August.
    2. Richard D. Bardgett & Wim H. van der Putten, 2014. "Belowground biodiversity and ecosystem functioning," Nature, Nature, vol. 515(7528), pages 505-511, November.
    3. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monther M. Tahat & Kholoud M. Alananbeh & Yahia A. Othman & Daniel I. Leskovar, 2020. "Soil Health and Sustainable Agriculture," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    2. Timothy E. Crews & Douglas J. Cattani, 2018. "Strategies, Advances, and Challenges in Breeding Perennial Grain Crops," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    3. Io Carydi & Athanasios Koutsianas & Marios Desyllas, 2023. "People, Crops, and Bee Farming: Landscape Models for a Symbiotic Network in Greece," Land, MDPI, vol. 12(2), pages 1-25, February.
    4. Yinhong Hu & Weiwei Yu & Bowen Cui & Yuanyuan Chen & Hua Zheng & Xiaoke Wang, 2021. "Pavement Overrides the Effects of Tree Species on Soil Bacterial Communities," IJERPH, MDPI, vol. 18(4), pages 1-11, February.
    5. Danilo Đokić & Bojan Matkovski & Marija Jeremić & Ivan Đurić, 2022. "Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans," Land, MDPI, vol. 11(12), pages 1-13, December.
    6. Angela Yaneth Landínez-Torres & Jessika Lucia Becerra Abril & Solveig Tosi & Lidia Nicola, 2020. "Soil Microfungi of the Colombian Natural Regions," IJERPH, MDPI, vol. 17(22), pages 1-28, November.
    7. Marco Bascietto & Enrico Santangelo & Claudio Beni, 2021. "Spatial Variations of Vegetation Index from Remote Sensing Linked to Soil Colloidal Status," Land, MDPI, vol. 10(1), pages 1-15, January.
    8. Jacqueline Theis & Christopher K. Woolley & Philip J. Seddon & Danielle F. Shanahan & Claire Freeman & Maibritt Pedersen Zari & Yolanda van Heezik, 2025. "The New Zealand Biodiversity Factor—Residential (NZBF-R): A Tool to Rapidly Score the Relative Biodiversity Value of Urban Residential Developments," Land, MDPI, vol. 14(3), pages 1-32, March.
    9. Anita Zapałowska & Andrzej Skwiercz & Dawid Kozacki & Czesław Puchalski, 2024. "Employing Plant Parasitic Nematodes as an Indicator for Assessing Advancements in Landfill Remediation," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
    10. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    11. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    12. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Lian-Jie Wan & Yang Tian & Man He & Yong-Qiang Zheng & Qiang Lyu & Rang-Jin Xie & Yan-Yan Ma & Lie Deng & Shi-Lai Yi, 2021. "Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield," Agriculture, MDPI, vol. 11(12), pages 1-15, November.
    14. Wojciech Bierza & Joanna Czarnecka & Agnieszka Błońska & Agnieszka Kompała-Bąba & Agnieszka Hutniczak & Bartosz Jendrzejek & Jawdat Bakr & Andrzej M. Jagodziński & Dariusz Prostański & Gabriela Woźnia, 2023. "Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    15. Qiuju Wang & Xin Liu & Jingyang Li & Xiaoyu Yang & Zhenhua Guo, 2021. "Straw application and soil organic carbon change: A meta-analysis," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(2), pages 112-120.
    16. Jonas Inkotte & Barbara Bomfim & Márcio Gonçalves da Rosa & Marco Bruno Xavier Valadão & Alcides Gatto & Juscelina Arcanjo Santos & Reginaldo Sergio Pereira, 2024. "Changes in Land Use through Eucalyptus Plantations Impact Soil Fauna Communities in Brazilian Savannas," Sustainability, MDPI, vol. 16(7), pages 1-14, April.
    17. Felicia Cheţan & Teodor Rusu & Cornel Cheţan & Camelia Urdă & Raluca Rezi & Alina Şimon & Ileana Bogdan, 2022. "Influence of Soil Tillage Systems on the Yield and Weeds Infestation in the Soybean Crop," Land, MDPI, vol. 11(10), pages 1-13, October.
    18. Xi Chen & Mingzhe Pu & Yu Zhong, 2022. "Evaluating China Food’s Fertilizer Reduction and Efficiency Initiative Using a Double Stochastic Meta-Frontier Method," IJERPH, MDPI, vol. 19(12), pages 1-21, June.
    19. Hinge, Gilbert & Surampalli, Rao Y. & Goyal, Manish Kumar & Gupta, Brij B. & Chang, Xiaojun, 2021. "Soil carbon and its associate resilience using big data analytics: For food Security and environmental management," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    20. Lianyu Zhou & Xuelan Ma & Longrui Wang & Wenjuan Sun & Yu Liu & Yun Ma & Huichun Xie & Feng Qiao, 2023. "Region and Crop Type Influenced Fungal Diversity and Community Structure in Agricultural Areas in Qinghai Province," Agriculture, MDPI, vol. 14(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:1090-:d:1658162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.