IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p794-d1629646.html
   My bibliography  Save this article

The Potential of the Copernicus Product “Imperviousness Classified Change” to Assess Soil Sealing in Agricultural Areas in Poland and Norway

Author

Listed:
  • Wendy Fjellstad

    (Department of Landscape Monitoring, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, 1431 Ås, Norway)

  • Agata Hościło

    (National Centre for Emissions Management, Institute of Environmental Protection—National Research Institute (IOŚ-PIB), 32 Slowicza St., 02-170 Warsaw, Poland)

  • Svein Olav Krøgli

    (Department of Landscape Monitoring, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, 1431 Ås, Norway)

  • Jonathan Rizzi

    (Department of Landscape Monitoring, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, 1431 Ås, Norway)

  • Milena Chmielewska

    (Institute of Geodesy and Cartography (IGiK), 27 Modzelewskiego Street, 02-679 Warsaw, Poland)

Abstract

Many countries have goals to reduce soil sealing of agricultural land to preserve food production capacity. To monitor progress, reliable data are needed to quantify soil sealing and changes over time. We examined the potential of the Imperviousness Classified Change (IMCC) 2015–2018 product provided by the Copernicus Land Monitoring Service (CLMS) to assess soil sealing in agricultural areas in Poland and Norway. We found very high overall accuracy due to the dominance of the area with no change. When we focused on areas classified as change, we found low user accuracy, with over-estimation of soil sealing. The producer accuracy was generally much higher, meaning that real cases of soil sealing were captured. This is better than under-estimation of soil sealing because it highlights areas where sealing may have occurred, allowing the user to carry out further control of this much smaller area, without having to assess the great expanse of unchanged area. We concluded that the datasets provide useful information for Europe. They are standardized and comparable across countries, which can enable comparison of the effects of policies intended to prevent soil sealing. Some distinctions between classes are not reliable, but the general information about increase or decrease is useful.

Suggested Citation

  • Wendy Fjellstad & Agata Hościło & Svein Olav Krøgli & Jonathan Rizzi & Milena Chmielewska, 2025. "The Potential of the Copernicus Product “Imperviousness Classified Change” to Assess Soil Sealing in Agricultural Areas in Poland and Norway," Land, MDPI, vol. 14(4), pages 1-14, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:794-:d:1629646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/794/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ciro Gardi & Panos Panagos & Marc Van Liedekerke & Claudio Bosco & Delphine De Brogniez, 2015. "Land take and food security: assessment of land take on the agricultural production in Europe," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(5), pages 898-912, May.
    2. Colsaet, Alice & Laurans, Yann & Levrel, Harold, 2018. "What drives land take and urban land expansion? A systematic review," Land Use Policy, Elsevier, vol. 79(C), pages 339-349.
    3. Elżbieta Badach & Janina Szewczyk & Sławomir Lisek & Jadwiga Bożek, 2023. "Size Structure Transformation of Polish Agricultural Farms in 2010–2020 by Typological Groups of Voivodeships," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Decoville, Antoine & Feltgen, Valérie, 2023. "Clarifying the EU objective of no net land take: A necessity to avoid the cure being worse than the disease," Land Use Policy, Elsevier, vol. 131(C).
    2. Dominik Bertram & Tobias Chilla & Carola Wilhelm, 2021. "Short Value Chains in Food Production: The Role of Spatial Proximity for Economic and Land Use Dynamics," Land, MDPI, vol. 10(9), pages 1-21, September.
    3. Jelena Živanović Miljković & Vesna Popović & Aleksandra Gajić, 2022. "Land Take Processes and Challenges for Urban Agriculture: A Spatial Analysis for Novi Sad, Serbia," Land, MDPI, vol. 11(6), pages 1-18, May.
    4. Elisabeth Marquard & Stephan Bartke & Judith Gifreu i Font & Alois Humer & Arend Jonkman & Evelin Jürgenson & Naja Marot & Lien Poelmans & Blaž Repe & Robert Rybski & Christoph Schröter-Schlaack & Jar, 2020. "Land Consumption and Land Take: Enhancing Conceptual Clarity for Evaluating Spatial Governance in the EU Context," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    5. Lin Meng & Wentao Si, 2022. "The Driving Mechanism of Urban Land Expansion from 2005 to 2018: The Case of Yangzhou, China," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    6. Grazia Brunetta & Ombretta Caldarice & Martino Faravelli, 2022. "Mainstreaming climate resilience: A GIS-based methodology to cope with cloudbursts in Turin, Italy," Environment and Planning B, , vol. 49(5), pages 1431-1447, June.
    7. Andrew Allan & Ali Soltani & Mohammad Hamed Abdi & Melika Zarei, 2022. "Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review," Land, MDPI, vol. 11(8), pages 1-20, August.
    8. Gaosheng Liu & Jie Pan & Yuxin Jiang & Xinquan Ye & Fan Shao, 2024. "Exploring the Effects of Urban Development in Ten Chinese Node Cities along the Belt and Road Initiative on Vegetation Net Primary Productivity," Sustainability, MDPI, vol. 16(11), pages 1-22, June.
    9. Jelena Živanović Miljković & Omiljena Dželebdžić & Nataša Čolić, 2022. "Land-Use Change Dynamics of Agricultural Land within Belgrade–Novi Sad Highway Corridor: A Spatial Planning Perspective," Land, MDPI, vol. 11(10), pages 1-15, September.
    10. Bonoua Faye & Guoming Du & Edmée Mbaye & Chang’an Liang & Tidiane Sané & Ruhao Xue, 2023. "Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors," Land, MDPI, vol. 12(4), pages 1-20, March.
    11. Wu, Rong & Li, Yingcheng & Wang, Shaojian, 2022. "Will the construction of high-speed rail accelerate urban land expansion? Evidences from Chinese cities," Land Use Policy, Elsevier, vol. 114(C).
    12. Menzori, Ivan Damasco & Sousa, Isabel Cristina Nunes de & Gonçalves, Luciana Márcia, 2021. "Urban growth management and territorial governance approaches: A master plans conformance analysis," Land Use Policy, Elsevier, vol. 105(C).
    13. Rosa Rivieccio & Lorenzo Sallustio & Massimo Paolanti & Matteo Vizzarri & Marco Marchetti, 2017. "Where Land Use Changes Occur: Using Soil Features to Understand the Economic Trends in Agricultural Lands," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    14. Zhanna A. Buryak & Olesya I. Grigoreva & Artyom V. Gusarov, 2023. "A Predictive Model for Cropland Transformation at the Regional Level: A Case Study of the Belgorod Oblast, European Russia," Resources, MDPI, vol. 12(11), pages 1-16, October.
    15. Troxler, David & Zabel, Astrid & Grêt-Regamey, Adrienne, 2023. "Identifying drivers of forest clearances in Switzerland," Forest Policy and Economics, Elsevier, vol. 150(C).
    16. Li He & Xukun Zhang, 2023. "Assessing the Impact of Pollution on Urban Scale in China: A New Perspective from Residents’ Health," Sustainability, MDPI, vol. 15(22), pages 1-21, November.
    17. Somayeh Ahani & Hashem Dadashpoor, 2021. "Urban growth containment policies for the guidance and control of peri-urbanization: a review and proposed framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14215-14244, October.
    18. Riccardo Scalenghe & Ottorino-Luca Pantani, 2019. "Connecting Existing Cemeteries Saving Good Soils (for Livings)," Sustainability, MDPI, vol. 12(1), pages 1-13, December.
    19. Schatz, Eva-Maria & Bovet, Jana & Lieder, Sebastian & Schroeter-Schlaack, Christoph & Strunz, Sebastian & Marquard, Elisabeth, 2021. "Land take in environmental assessments: Recent advances and persisting challenges in selected EU countries," Land Use Policy, Elsevier, vol. 111(C).
    20. Daniela Smiraglia & Alice Cavalli & Chiara Giuliani & Francesca Assennato, 2023. "The Increasing Coastal Urbanization in the Mediterranean Environment: The State of the Art in Italy," Land, MDPI, vol. 12(5), pages 1-17, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:794-:d:1629646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.