IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p586-d1609321.html
   My bibliography  Save this article

Practical Steps for Urban Flood Risk Mitigation Using Nature-Based Solutions—A Case Study in New Cairo , Egypt

Author

Listed:
  • Walaa S. E. Ismaeel

    (Faculty of Engineering, Architectural Engineering Department, The British University in Egypt, El-Sherouk City 11837, Egypt)

  • Nada Ali Mustafa

    (Faculty of Engineering, Architectural Engineering Department, The British University in Egypt, El-Sherouk City 11837, Egypt)

Abstract

This study investigated the effectiveness of nature-based solutions (NBSs) as a resilient strategy for mitigating urban flood risks in a developing hot arid country. The research method included the following steps: (a) performing a flood hazard risk assessment for the Fifth Settlement district in New Cairo , Egypt, (b) selecting best-fit NBSs, and (c) performance assessment. The process started with flood hazard analysis using hydrological data, topographical maps, urban planning, and land use maps, in addition to the history of storm events. This step defined the urban areas located in flood depth zones and categorized their flood hazard level. Exposure assessment considered the number and characteristics of population and buildings exposed to flood hazards. Vulnerability assessment determined the vulnerable characteristics of exposed populations and buildings to flood risk. The result of this assessment step indicated that there were 2000 buildings distributed in almost twenty neighborhood areas facing high flood risk. One of these urban areas with 72 building units, including residential, public, and services buildings, was selected to test the potential of integrating NBSs for flood-resilient land use planning and disaster preparedness. The selection of best-fit NBSs was based on a weighted-average sum matrix considering their climatic and contextual suitability and applicability. As a final step, numerical simulation models helped assess the efficiency of the selected NBSs for stormwater runoff reduction and the percentage of the volume capture goal. Five simulation models tested the efficiency of each NBS individually. Rain gardens achieved the highest stormwater capture percentage, while green roofs performed the least effectively, with capture rates of 43.6% and 9.9%, respectively. Two more simulation models were developed to evaluate the efficiency of NBSs when implemented in combination compared to the base case of using no NBSs. Permeable paving demonstrated the highest effectiveness in volume capture. The result indicated that applying combined measures of NBSs over 54.1% of the total site area was able to capture 8% more than the required volume capture goal. Consequently, this study underscores the necessity of adopting tailored solutions and integrated approaches using NBSs for flood risk mitigation. This necessitates testing their performance under site-specific conditions and future climate projections.

Suggested Citation

  • Walaa S. E. Ismaeel & Nada Ali Mustafa, 2025. "Practical Steps for Urban Flood Risk Mitigation Using Nature-Based Solutions—A Case Study in New Cairo , Egypt," Land, MDPI, vol. 14(3), pages 1-19, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:586-:d:1609321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Abdelkareem & Abbas M. Mansour, 2023. "Risk assessment and management of vulnerable areas to flash flood hazards in arid regions using remote sensing and GIS-based knowledge-driven techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2269-2295, July.
    2. Silvia Martín Muñoz & Simon Elliott & Jonas Schoelynck & Jan Staes, 2024. "Urban Stormwater Management Using Nature-Based Solutions: A Review and Conceptual Model of Floodable Parks," Land, MDPI, vol. 13(11), pages 1-24, November.
    3. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    4. Ana Mafalda Mendes & Cristina M. Monteiro & Cristina Santos, 2025. "Green Roofs Hydrological Performance and Contribution to Urban Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1015-1031, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raquel Toste & Adriano Vasconcelos & Luiz Paulo de Freitas Assad & Luiz Landau, 2024. "Dynamically downscaled coastal flooding in Brazil’s Guanabara Bay under a future climate change scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7845-7869, June.
    2. Hossain, Mohammad Khalid & Meng, Qingmin, 2020. "A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood," Land Use Policy, Elsevier, vol. 99(C).
    3. Xinlu XIE & Yan ZHENG & Jiahua PAN & Hongjian ZHOU, 2018. "Urban Vulnerability and Adaptability to Climate Change: A Case Study of Cities in the Yangtze River Delta," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-19, March.
    4. Hui Xu & Junlong Gao & Xinchun Yu & Qianqian Qin & Shiqiang Du & Jiahong Wen, 2024. "Assessment of Rainstorm Waterlogging Disaster Risk in Rapidly Urbanizing Areas Based on Land Use Scenario Simulation: A Case Study of Jiangqiao Town in Shanghai, China," Land, MDPI, vol. 13(7), pages 1-18, July.
    5. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    6. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    7. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    8. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    9. Emilio Laino & Gregorio Iglesias, 2024. "High-level characterisation and mapping of key climate-change hazards in European coastal cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3623-3659, March.
    10. Caridad Ballesteros & José A. Jiménez & Christophe Viavattene, 2018. "A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 265-292, January.
    11. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    12. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
    13. Andrés García-Ruiz & Manuel Díez-Minguito & Konstantin Verichev & Manuel Carpio, 2024. "Bibliometric Analysis of Urban Coastal Development: Strategies for Climate-Resilient Timber Housing," Sustainability, MDPI, vol. 16(4), pages 1-25, February.
    14. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    15. M. A. Hoque & P. F. D. Scheelbeek & P. Vineis & A. E. Khan & K. M. Ahmed & A. P. Butler, 2016. "Drinking water vulnerability to climate change and alternatives for adaptation in coastal South and South East Asia," Climatic Change, Springer, vol. 136(2), pages 247-263, May.
    16. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    17. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    18. Yao An & Ning Liu & Lin Zhang & Huanhuan Zheng, 2022. "Adapting to climate risks through cross-border investments: industrial vulnerability and smart city resilience," Climatic Change, Springer, vol. 174(1), pages 1-29, September.
    19. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.
    20. Fabiana Navia Miranda & Tiago Miguel Ferreira, 2019. "A simplified approach for flood vulnerability assessment of historic sites," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 713-730, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:586-:d:1609321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.