IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p224-d1573275.html
   My bibliography  Save this article

A Systematic Literature Review of Water-Sensitive Urban Design and Flood Risk Management in Contexts of Strategic Urban Sustainability Planning

Author

Listed:
  • Tahia Tasnia

    (Independent Researcher, 34125 Kassel, Germany)

  • Anna Growe

    (Faculty of Architecture, Urban Planning and Landscape Planning, Institute of Urban Developments, Kassel University, 34127 Kassel, Germany)

Abstract

Despite various sustainable urban development frameworks, over the years, inadequate land use patterns and infrastructure have worsened existing problems related to climate disasters such as flooding, heavy precipitation and droughts. Based on a systematic PRISMA literature search and bibliographic analysis, we analyzed statistical data from 44 articles relevant to water-sensitive urban design (WSUD) and flood risk management (FRM) worldwide from 2013 to 2023. We focused on specific selection criteria that focused on settlement typologies and outcomes, indicators and planning approaches to analyze the impact of flooding on urban infrastructure of four different settlement types in 23 case studies, summarized into nine different approaches. The results show that WSUD and FRM have shared sustainability goals but differ in their focus and applicability depending on the settlement type and indicators. In the context of strategic planning for urban sustainability, it can be stated that WSUD has a much stronger focus on integration and future orientation than FRM. Therefore, WSUD seems better suited to be linked to strategic planning for urban sustainability than FRM. Finally, we propose to extend WSUD to “water-sensitive regional design (WSRD)”. This broader framework would integrate regional hydrological, ecological and socioeconomic aspects to address water issues at a larger scale.

Suggested Citation

  • Tahia Tasnia & Anna Growe, 2025. "A Systematic Literature Review of Water-Sensitive Urban Design and Flood Risk Management in Contexts of Strategic Urban Sustainability Planning," Land, MDPI, vol. 14(2), pages 1-24, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:224-:d:1573275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patience Mguni & Lise Herslund & Marina Bergen Jensen, 2016. "Sustainable urban drainage systems: examining the potential for green infrastructure-based stormwater management for Sub-Saharan cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 241-257, June.
    2. Chan, Faith Ka Shun & Griffiths, James A. & Higgitt, David & Xu, Shuyang & Zhu, Fangfang & Tang, Yu-Ting & Xu, Yuyao & Thorne, Colin R., 2018. "“Sponge City” in China—A breakthrough of planning and flood risk management in the urban context," Land Use Policy, Elsevier, vol. 76(C), pages 772-778.
    3. Britta Restemeyer & Johan Woltjer & Margo van den Brink, 2015. "A strategy-based framework for assessing the flood resilience of cities - A Hamburg case study," Planning Theory & Practice, Taylor & Francis Journals, vol. 16(1), pages 45-62, March.
    4. Chulalux Wanitchayapaisit & Nadchawan Charoenlertthanakit & Vipavee Surinseng & Ekachai Yaipimol & Damrongsak Rinchumphu & Pongsakorn Suppakittpaisarn, 2023. "Enhancing Water-Sensitive Urban Design in Chiang Mai through a Research–Design Collaboration," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    5. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    6. Robert Šakić Trogrlić & Grant B. Wright & Melanie J. Duncan & Marc J. C. van den Homberg & Adebayo J. Adeloye & Faidess D. Mwale & Joyce Mwafulirwa, 2019. "Characterising Local Knowledge across the Flood Risk Management Cycle: A Case Study of Southern Malawi," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
    7. Elvira Nicolini & Antonella Mamì, 2023. "Circular Water Management in Public Space—Experimental Feasibility Studies in Different Urban Contexts," Sustainability, MDPI, vol. 15(15), pages 1-17, August.
    8. Mick Lennon & Mark Scott & Eoin O'Neill, 2014. "Urban Design and Adapting to Flood Risk: The Role of Green Infrastructure," Journal of Urban Design, Taylor & Francis Journals, vol. 19(5), pages 745-758, December.
    9. Wim Kellens & Wouter Vanneuville & Els Verfaillie & Ellen Meire & Pieter Deckers & Philippe Maeyer, 2013. "Flood Risk Management in Flanders: Past Developments and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3585-3606, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onur Aksoy & Kamil Erken & Eren Dağra Sökmen, 2025. "Application of Sponge City strategies in flood susceptible areas; Hatay, Antakya example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4781-4801, March.
    2. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.
    3. Muhammad Asif & Monique M. Kuglitsch & Ivanka Pelivan & Raffaele Albano, 2025. "Review and Intercomparison of Machine Learning Applications for Short-term Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(5), pages 1971-1991, March.
    4. Xinyu Wu & Rong Tang & Yuntao Wang, 2024. "Evaluating the cost–benefit of LID strategies for urban surface water flooding based on risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10345-10364, September.
    5. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    6. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.
    7. Faith Ka Shun Chan & Xinbing Gu & Yunfei Qi & Dimple Thadani & Yongqin David Chen & Xiaohui Lu & Lei Li & James Griffiths & Fangfang Zhu & Jianfeng Li & Wendy Y. Chen, 2022. "Lessons learnt from Typhoons Fitow and In-Fa: implications for improving urban flood resilience in Asian Coastal Cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2397-2404, February.
    8. J. F. Rosser & D. G. Leibovici & M. J. Jackson, 2017. "Rapid flood inundation mapping using social media, remote sensing and topographic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 103-120, May.
    9. Anna Rita Scorzini & Maurizio Leopardi, 2017. "River basin planning: from qualitative to quantitative flood risk assessment: the case of Abruzzo Region (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 71-93, August.
    10. Khalid Oubennaceur & Karem Chokmani & Florence Lessard & Yves Gauthier & Catherine Baltazar & Jean-Patrick Toussaint, 2022. "Understanding Flood Risk Perception: A Case Study from Canada," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    11. Norizan, Nur Zainul Arifin & Hassan, Norhaslina & Yusoff, Mariney Mohd, 2021. "Strengthening flood resilient development in malaysia through integration of flood risk reduction measures in local plans," Land Use Policy, Elsevier, vol. 102(C).
    12. Renato Monteiro & José C. Ferreira & Paula Antunes, 2020. "Green Infrastructure Planning Principles: An Integrated Literature Review," Land, MDPI, vol. 9(12), pages 1-19, December.
    13. Song-Yue Yang & Che-Hao Chang & Chih-Tsung Hsu & Shiang-Jen Wu, 2022. "Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2297-2315, April.
    14. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    15. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    16. David Ocio & Christian Stocker & Ángel Eraso & Arantza Martínez & José María Sanz Galdeano, 2016. "Towards a reliable and cost-efficient flood risk management: the case of the Basque Country (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 617-639, March.
    17. Dries Hegger & Peter Driessen & Carel Dieperink & Mark Wiering & G. Raadgever & Helena Rijswick, 2014. "Assessing Stability and Dynamics in Flood Risk Governance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4127-4142, September.
    18. Taşkın, Halime Firdevs & Manioğlu, Gülten, 2024. "Evaluation of the impact of land use ratios and cover materials in settlement design on stormwater runoff," Land Use Policy, Elsevier, vol. 146(C).
    19. Ignacio Fraga & Luis Cea & Jerónimo Puertas, 2020. "MERLIN: a flood hazard forecasting system for coastal river reaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1171-1193, February.
    20. Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:224-:d:1573275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.