IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2024i1p58-d1557710.html
   My bibliography  Save this article

Mapping Groundwater Vulnerability in Arid Regions: A Comparative Risk Assessment Using Modified DRASTIC Models, Land Use, and Climate Change Factors

Author

Listed:
  • Simone A. Williams

    (Arid Lands Resource Sciences, The University of Arizona, Tucson, AZ 85721, USA
    Water Resources Research Center, The University of Arizona, Tucson, AZ 85721, USA)

  • Sharon B. Megdal

    (Water Resources Research Center, The University of Arizona, Tucson, AZ 85721, USA)

  • Adriana A. Zuniga-Teran

    (School of Geography, Development & Environment, The University of Arizona, Tucson, AZ 85721, USA
    The Udall Center for Studies in Public Policy, The University of Arizona, Tucson, AZ 85721, USA)

  • David M. Quanrud

    (School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA)

  • Gary Christopherson

    (School of Geography, Development & Environment, The University of Arizona, Tucson, AZ 85721, USA)

Abstract

Groundwater vulnerability in arid regions is increasingly influenced by land use changes and climate variability. This study evaluates groundwater vulnerability and contamination risk in the arid/semi-arid Verde River Basin and Prescott Active Management Area using four models: DRASTIC, DRASTIC-LUCC, DRASTIC-LUCC-AHP2, and DRASTIC-LUCC-AHP4. Modifications to the traditional DRASTIC model, including the integration of land use and climate factors and the application of AHP (Analytic Hierarchy Process) to refine variable weighting, significantly enhanced predictive accuracy. Results demonstrate that models incorporating land use and climate data outperform the traditional approach. The DRASTIC-LUCC model identified elevated nitrate concentrations in high-vulnerability areas, while DRASTIC-LUCC-AHP2 exhibited the greatest sensitivity in classifying vulnerability. Karst aquifers were particularly susceptible due to their high permeability and rapid contaminant transport. Recommendations include routinely integrating land use and climate data into vulnerability assessments, enforcing land use controls in high-risk zones, promoting adaptive management practices, and raising public awareness to mitigate contamination risks. This framework offers actionable strategies for improving groundwater protection and sustainable management in arid and semi-arid regions facing water security challenges.

Suggested Citation

  • Simone A. Williams & Sharon B. Megdal & Adriana A. Zuniga-Teran & David M. Quanrud & Gary Christopherson, 2024. "Mapping Groundwater Vulnerability in Arid Regions: A Comparative Risk Assessment Using Modified DRASTIC Models, Land Use, and Climate Change Factors," Land, MDPI, vol. 14(1), pages 1-25, December.
  • Handle: RePEc:gam:jlands:v:14:y:2024:i:1:p:58-:d:1557710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/58/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/58/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. L Benini & M Antonellini & M Laghi & P. N. Mollema, 2016. "Assessment of Water Resources Availability and Groundwater Salinization in Future Climate and Land use Change Scenarios: A Case Study from a Coastal Drainage Basin in Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 731-745, January.
    3. L Benini & M Antonellini & M Laghi & P. Mollema, 2016. "Assessment of Water Resources Availability and Groundwater Salinization in Future Climate and Land use Change Scenarios: A Case Study from a Coastal Drainage Basin in Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 731-745, January.
    4. Travis Warziniack & Chi Ho Sham & Robert Morgan & Yasha Feferholtz, 2017. "Effect of Forest Cover on Water Treatment Costs," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-19, October.
    5. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, June.
    6. Brian Thomas & James Famiglietti, 2015. "Sustainable Groundwater Management in the Arid Southwestern US: Coachella Valley, California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4411-4426, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marzia Ciampittiello & Aldo Marchetto & Angela Boggero, 2024. "Water Resources Management under Climate Change: A Review," Sustainability, MDPI, vol. 16(9), pages 1-14, April.
    2. Penny, Jessica & Ordens, Carlos M. & Barnett, Steve & Djordjević, Slobodan & Chen, Albert S., 2023. "Vineyards, vegetables or business-as-usual? Stakeholder-informed land use change modelling to predict the future of a groundwater-dependent prime-wine region under climate change," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Noelia Guaita García & Julia Martínez Fernández & Carl Fitz, 2020. "Environmental Scenario Analysis on Natural and Social-Ecological Systems: A Review of Methods, Approaches and Applications," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    4. Bruno J. Ballesteros & Ignacio Morell & Olga García-Menéndez & Arianna Renau-Pruñonosa, 2016. "A Standardized Index for Assessing Seawater Intrusion in Coastal Aquifers: The SITE Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4513-4527, October.
    5. Majid Rezaei & Hosein Alizadeh & Majid Ehtiat, 2019. "Process-based Analysis of the Climate Change Impacts on Primary Hydro-Salinity of the River Ecosystems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4287-4302, September.
    6. Gajanan Ramteke & R. Singh & C. Chatterjee, 2020. "Assessing Impacts of Conservation Measures on Watershed Hydrology Using MIKE SHE Model in the Face of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4233-4252, October.
    7. Leticia Baena-Ruiz & David Pulido-Velazquez & Antonio-Juan Collados-Lara & Arianna Renau-Pruñonosa & Ignacio Morell, 2018. "Global Assessment of Seawater Intrusion Problems (Status and Vulnerability)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2681-2700, June.
    8. Yujuan Su & Fengtian Yang & Yaoxuan Chen & Pan Zhang & Xue Zhang, 2021. "Optimization of Groundwater Exploitation in an Irrigation Area in the Arid Upper Peacock River, NW China: Implications for Sustainable Agriculture and Ecology," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    9. Martina Artmann, 2013. "Response-Efficiency-Assessment: A Conceptual Framework For Rating Policy'S Efficiency To Meet Sustainable Development On The Example Of Soil Sealing Management," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33.
    10. Gözaçan Nazlıcan & Lafci Çisem, 2020. "Evaluation of Key Performance Indicators of Logistics Firms," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 11(1), pages 24-32, February.
    11. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    12. Jérôme Texier & Julio Gonçalvès & Agnès Rivière, 2022. "Numerical Assessment of Groundwater Flowpaths below a Streambed in Alluvial Plains Impacted by a Pumping Field," Post-Print hal-03629140, HAL.
    13. Xianmei Wang & Hanhui Hu, 2017. "Sustainability in Chinese Higher Educational Institutions’ Social Science Research: A Performance Interface toward Efficiency," Sustainability, MDPI, vol. 9(11), pages 1-18, October.
    14. Satheeskumar Navaratnam, 2022. "Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    15. Md Monjurul Islam & Tofael Ahamed & Ryozo Noguchi, 2018. "Land Suitability and Insurance Premiums: A GIS-based Multicriteria Analysis Approach for Sustainable Rice Production," Sustainability, MDPI, vol. 10(6), pages 1-28, May.
    16. Roberta Mele & Giuliano Poli, 2017. "The Effectiveness of Geographical Data in Multi-Criteria Evaluation of Landscape Services †," Data, MDPI, vol. 2(1), pages 1-11, February.
    17. Mariia Dushenko & Clemet Thærie Bjorbæk & Kenn Steger-Jensen, 2018. "Application of a Sustainability Model for Assessing the Relocation of a Container Terminal: A Case Study of Kristiansand Port," Sustainability, MDPI, vol. 11(1), pages 1-18, December.
    18. Hao-Chang Tsai & An-Sheng Lee & Huang-Ning Lee & Chien-Nan Chen & Yu-Chun Liu, 2020. "An Application of the Fuzzy Delphi Method and Fuzzy AHP on the Discussion of Training Indicators for the Regional Competition, Taiwan National Skills Competition, in the Trade of Joinery," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    19. Warziniack, Travis & Sims, Charles & Haas, Jessica, 2019. "Fire and the joint production of ecosystem services: A spatial-dynamic optimization approach," Forest Policy and Economics, Elsevier, vol. 107(C), pages 1-1.
    20. Adiprasetyo, Teguh & Suhartoyo, Hery & Firdaus, Arief, 2017. "Developing Strategy for Advancing Organic Agriculture as Sustainable Agricultural Practice," INA-Rxiv wb37h, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2024:i:1:p:58-:d:1557710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.