IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p980-d1428197.html
   My bibliography  Save this article

Spatiotemporal Evolution and Coupling Analysis of Human Footprints and Habitat Quality: Evidence of 21 Consecutive Years in China

Author

Listed:
  • Qiang Xue

    (Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
    The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100041, China)

  • Lu Lu

    (Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
    The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100041, China)

  • Yang Zhang

    (Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
    College of Environmental Science and Engineering, Peking University, Beijing 100871, China)

  • Changbo Qin

    (Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
    The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100041, China)

Abstract

Assessing the spatiotemporal evolution characteristics of habitat quality, human footprint, and coupling coordination between two systems in continuous cycles and on national scales is of great significance to maintaining biodiversity and sustainable development. This study took China as an example, based on land-use data from 2000 to 2020, using the Integrated Valuation of Ecosystem Services and Tradeoffs—Habitat Quality (InVEST-HQ) model and the human footprint framework, coupling trend analysis methods such as Theil–Sen Median Analysis, Mann–Kendall Test, and Grid Transition Matrix (GTM) Method and combining the four-quadrant model and the coupling coordination degree model (CCDM) to reveal the spatiotemporal evolution characteristics of habitat quality, human footprint, and CCDM in China for 21 consecutive years and the response relationship between the two systems of habitat quality and human footprint. The results show that the land cover change area from 2000 to 2020 accounted for 4.2% of the total area. Both habitat quality and human footprints exhibit apparent spatial heterogeneity along the “Hu Line” and generally fall into two evolutionary stages: “degradation–improvement”. The proportions of degradation and improvement were 14.37% and 8.36%, respectively, and the mutation point was in the year 2013; the average human footprint increased by 16.75%, and the increased and decreased area proportions were 63.40% and 21.53%, respectively. The mutation occurred in 2014. The right side of the “Hu Line” primarily hosts areas with high values of the coordinated coupling index of human footprints and habitat quality systems. The four quadrants generally have the following characteristics: “quadrant IV on the right is dominant, quadrants II and III on the left are dominant, and quadrant I is located in the transition zone of the ‘Hu Line’”. The coupling coordination degree (CCD) and human footprints have a weak, nonlinear “inverted U-shaped” relationship. This study provides compelling evidence for the spatiotemporal evolution and coupling relationship between habitat quality and human footprint in China, provides scientific decision-making support for biodiversity protection and sustainable economic development, and maintains the bottom line of ecological security for a beautiful China.

Suggested Citation

  • Qiang Xue & Lu Lu & Yang Zhang & Changbo Qin, 2024. "Spatiotemporal Evolution and Coupling Analysis of Human Footprints and Habitat Quality: Evidence of 21 Consecutive Years in China," Land, MDPI, vol. 13(7), pages 1-21, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:980-:d:1428197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kong, Xuesong & Fu, Mengxue & Zhao, Xiang & Wang, Jing & Jiang, Ping, 2022. "Ecological effects of land-use change on two sides of the Hu Huanyong Line in China," Land Use Policy, Elsevier, vol. 113(C).
    2. Moreno Di Marco & Simon Ferrier & Tom D. Harwood & Andrew J. Hoskins & James E. M. Watson, 2019. "Wilderness areas halve the extinction risk of terrestrial biodiversity," Nature, Nature, vol. 573(7775), pages 582-585, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanqiu Zhang & Zeru Jiang & Huayang Dai & Gang Lin & Kun Liu & Ruiwen Yan & Yuanhao Zhu, 2024. "Modelling Multi-Scenario Ecological Network Patterns and Dynamic Spatial Conservation Priorities in Mining Areas," Land, MDPI, vol. 13(7), pages 1-21, July.
    2. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    3. Yaqi Cheng & Xuyang Zhang & Wei Song, 2024. "Ecological Risk Assessment of Land Use Change in the Tarim River Basin, Xinjiang, China," Land, MDPI, vol. 13(4), pages 1-18, April.
    4. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    5. Guangdong Li & Chuanglin Fang & James E. M. Watson & Siao Sun & Wei Qi & Zhenbo Wang & Jianguo Liu, 2024. "Mixed effectiveness of global protected areas in resisting habitat loss," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. repec:caa:jnljfs:v:preprint:id:118-2023-jfs is not listed on IDEAS
    7. Liang, Yuanning & Rudik, Ivan & Zou, Eric Yongchen, 2021. "The Environmental Effects of Economic Production: Evidence from Ecological Observations," SocArXiv qy76a_v1, Center for Open Science.
    8. Zheng Zang & Qilong Ren & Yuqing Zhang, 2022. "Analysis of the Spatial Adaptability of Gross Ecosystem Production, Gross Domestic Production, and Population Density in Chinese Mainland," Land, MDPI, vol. 11(8), pages 1-14, August.
    9. Ralf C. Buckley & Sonya Underdahl, 2023. "Tourism and Environment: Ecology, Management, Economics, Climate, Health, and Politics," Sustainability, MDPI, vol. 15(21), pages 1-11, October.
    10. Xiaohong Li & Jiuhong Zhang & Jinxia Huang & Wenhao Lin & Shengjun Wu & Maohua Ma, 2022. "To Preserve Green Buffer under Polarization and Diffusion Effects of a Fast-Developing Megalopolis," Land, MDPI, vol. 11(5), pages 1-20, May.
    11. Carmen Galán-Acedo & Gabriela Pacheco Hass & Vinícius Klain & Pedro Bencke & Júlio César Bicca-Marques, 2024. "Urban Matrices Threaten Patch Occurrence of Howler Monkeys in Anthropogenic Landscapes," Land, MDPI, vol. 13(4), pages 1-13, April.
    12. Zhou, Yang & Zhong, Zhen & Cheng, Guoqiang, 2023. "Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019," Land Use Policy, Elsevier, vol. 125(C).
    13. He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    14. Huiying Li & Dianfeng Liu & Jianhua He, 2022. "Exploring Differentiated Conservation Priorities of Urban Green Space Based on Tradeoffs of Ecological Functions," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
    15. Qiang Yang & Juncheng Fan & Jie Min & Jiaming Na & Pengling Wang & Xinyuan Wang & Ruichun Chang & Quanfeng Wang, 2023. "Assessment of Human Settlement Quality Based on the Population Exposure Risk to PM 2.5 Pollution in the Mid-Spine Belt of Beautiful China," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    16. Ji Zhang & Shiqi Yang & Shengtian Yang & Li Fan & Xu Zhou, 2023. "Spatio-Temporal Variations of Ecosystem Water Use Efficiency and Its Drivers in Southwest China," Land, MDPI, vol. 12(2), pages 1-15, February.
    17. Yue Pan & Jing Gao & Jianxin Yang, 2025. "A “Foundation-Function-Structure” Framework for Multiple Scenario Assessment of Land Change-Induced Dynamics in Regional Ecosystem Quality," Land, MDPI, vol. 14(3), pages 1-23, March.
    18. Jiří Lehejček & Matěj Roman & Martin Lexa & Paul Eric Aspholm & Jiří Mašek, 2024. "Old Juniper Troll stand - The oldest shrub population from Scandinavia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 70(4), pages 176-184.
    19. Houtian Tang & Yuanlai Wu & Jinxiu Chen & Liuxin Deng & Minjie Zeng, 2022. "How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River," Land, MDPI, vol. 11(12), pages 1-20, December.
    20. Ackerschott, Adriana & Kohlhase, Esther & Vollmer, Anita & Hörisch, Jacob & von Wehrden, Henrik, 2023. "Steering of land use in the context of sustainable development: A systematic review of economic instruments," Land Use Policy, Elsevier, vol. 129(C).
    21. Jingheng Wang & Yecui Hu & Rong Song & Wei Wang, 2022. "Research on the Optimal Allocation of Ecological Land from the Perspective of Human Needs—Taking Hechi City, Guangxi as an Example," IJERPH, MDPI, vol. 19(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:980-:d:1428197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.