IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i5p697-d1395743.html
   My bibliography  Save this article

Understanding and Assessing Climate Change Risk to Green Infrastructure: Experiences from Greater Manchester (UK)

Author

Listed:
  • Jeremy Carter

    (Department of Planning, Property and Environmental Management, University of Manchester, Manchester M13 9PL, UK)

  • S.M. Labib

    (Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands)

  • Ian Mell

    (Department of Planning, Property and Environmental Management, University of Manchester, Manchester M13 9PL, UK)

Abstract

The existing body of research into the environmental and socio-economic benefits of green infrastructure supports the case for it to be positioned as a form of critical infrastructure, particularly in urban settings. It is broadly recognized that extreme weather and climate change pose significant risks to critical infrastructure systems linked to the provision of services, including electricity, water, communications, and transport, and consequently risk assessments and associated adaptation strategies are common practice. However, although green infrastructure is also at risk from extreme weather and climate change, threatening the realization of benefits that it can deliver in urban settings, associated risks to green infrastructure are not widely understood or assessed in practice. This paper discusses the status of existing research on this topic and uses this as a foundation for a Greater Manchester (UK) case study that assesses the risk of low water availability to grassed areas, which represent a key element of the city-region’s green infrastructure. In doing so, the paper demonstrates how risks linked to extreme weather and climate change can be assessed spatially to inform green infrastructure planning. In summary, this paper aims to raise awareness of extreme weather and climate change risk to urban green infrastructure, present an empirical case study and associated methodological approach on this topic, and ultimately support efforts to enhance the resilience of urban green infrastructure to extreme weather and climate change.

Suggested Citation

  • Jeremy Carter & S.M. Labib & Ian Mell, 2024. "Understanding and Assessing Climate Change Risk to Green Infrastructure: Experiences from Greater Manchester (UK)," Land, MDPI, vol. 13(5), pages 1-22, May.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:697-:d:1395743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/5/697/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/5/697/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brandt, Leslie & Derby Lewis, Abigail & Fahey, Robert & Scott, Lydia & Darling, Lindsay & Swanston, Chris, 2016. "A framework for adapting urban forests to climate change," Environmental Science & Policy, Elsevier, vol. 66(C), pages 393-402.
    2. Małgorzata Hanzl & Anna Tofiluk & Kinga Zinowiec-Cieplik & Magdalena Grochulska-Salak & Anna Nowak, 2021. "The Role of Vegetation in Climate Adaptability: Case Studies of Lodz and Warsaw," Urban Planning, Cogitatio Press, vol. 6(4), pages 9-24.
    3. Eric Dickson & Judy L. Baker & Daniel Hoornweg & Asmita Tiwari, 2012. "Urban Risk Assessments : Understanding Disaster and Climate Risk in Cities," World Bank Publications - Books, The World Bank Group, number 12356, December.
    4. S. J. Lindley & J. F. Handley & N. Theuray & E. Peet & D. Mcevoy, 2006. "Adaptation Strategies for Climate Change in the Urban Environment: Assessing Climate Change Related Risk in UK Urban Areas," Journal of Risk Research, Taylor & Francis Journals, vol. 9(5), pages 543-568, July.
    5. Bonnie L. Keeler & Perrine Hamel & Timon McPhearson & Maike H. Hamann & Marie L. Donahue & Kelly A. Meza Prado & Katie K. Arkema & Gregory N. Bratman & Kate A. Brauman & Jacques C. Finlay & Anne D. Gu, 2019. "Social-ecological and technological factors moderate the value of urban nature," Nature Sustainability, Nature, vol. 2(1), pages 29-38, January.
    6. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    7. repec:wbk:wbpubs:12355 is not listed on IDEAS
    8. A.R. Siders, 2019. "Adaptive capacity to climate change: A synthesis of concepts, methods, and findings in a fragmented field," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 10(3), May.
    9. Heather L Reynolds & Leslie Brandt & Burnell C Fischer & Brady S Hardiman & Donovan J Moxley & Eric Sandweiss & James H Speer & Songlin Fei, 2020. "Implications of climate change for managing urban green infrastructure: an Indiana, US case study," Climatic Change, Springer, vol. 163(4), pages 1967-1984, December.
    10. C. Ordóñez & P. Duinker, 2015. "Climate change vulnerability assessment of the urban forest in three Canadian cities," Climatic Change, Springer, vol. 131(4), pages 531-543, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angela Connelly & Jeremy Carter & John Handley & Stephen Hincks, 2018. "Enhancing the Practical Utility of Risk Assessments in Climate Change Adaptation," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    2. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    3. Giovanni Matteo & Pierfrancesco Nardi & Stefano Grego & Caterina Guidi, 2018. "Bibliometric analysis of Climate Change Vulnerability Assessment research," Environment Systems and Decisions, Springer, vol. 38(4), pages 508-516, December.
    4. Hendrawan, Dienda C P & Musshoff, Oliver, 2022. "Oil Palm Smallholder Farmers' Livelihood Resilience and Decision Making in Replanting," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322441, Agricultural and Applied Economics Association.
    5. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    6. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    7. Evans, Nicole M. & Carrozzino-Lyon, Amy L. & Galbraith, Betsy & Noordyk, Julia & Peroff, Deidre M. & Stoll, John & Thompson, Aaron & Winden, Matthew W. & Davis, Mark A., 2019. "Integrated ecosystem service assessment for landscape conservation design in the Green Bay watershed, Wisconsin," Ecosystem Services, Elsevier, vol. 39(C).
    8. Desbureaux, Sébastien & Brimont, Laura, 2015. "Between economic loss and social identity: The multi-dimensional cost of avoiding deforestation in Eastern Madagascar," Ecological Economics, Elsevier, vol. 118(C), pages 10-20.
    9. Shrestha, Ram K. & Seidl, Andrew F. & Moraes, Andre S., 2002. "Value of recreational fishing in the Brazilian Pantanal: a travel cost analysis using count data models," Ecological Economics, Elsevier, vol. 42(1-2), pages 289-299, August.
    10. Guo, Jianke & Dong, Mengru & Zheng, Miaozhuang & Han, Zenglin & Li, Fujia, 2023. "The composition and evaluation of the strategic value of high seas resources: A theoretical model based on the human–sea relationship," Resources Policy, Elsevier, vol. 81(C).
    11. Sangha, Kamaljit K & Evans, Jay & Edwards, Andrew & Russell-Smith, Jeremy & Fisher, Rohan & Yates, Cameron & Costanza, Robert, 2021. "Assessing the value of ecosystem services delivered by prescribed fire management in Australian tropical savannas," Ecosystem Services, Elsevier, vol. 51(C).
    12. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    13. Dai, Xuhuan & Li, Bo & Zheng, Hua & Yang, Yanzheng & Yang, Zihan & Peng, Chenchen, 2023. "Can sedentarization decrease the dependence of pastoral livelihoods on ecosystem services?," Ecological Economics, Elsevier, vol. 203(C).
    14. Shaokang Fu & Lin Zhao & Zhi Qiao & Tong Sun & Meng Sun & Yuying Hao & Siyu Hu & Yanchang Zhang, 2021. "Development of Ecosystem Health Assessment (EHA) and Application Method: A Review," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    15. Jiayi Zhou & Kangning Xiong & Qi Wang & Jiuhan Tang & Li Lin, 2022. "A Review of Ecological Assets and Ecological Products Supply: Implications for the Karst Rocky Desertification Control," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    16. Neville D Crossman & Jeffrey D Connor & Brett A Bryan & David A Summers & John Ginnivan, 2009. "Reconfiguring an Irrigation Landscape to Improve Provision of Ecosystem Services," Socio-Economics and the Environment in Discussion (SEED) Working Paper Series 2009-07, CSIRO Sustainable Ecosystems.
    17. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    18. Zhang Jingchao & Koji Kotani & Tatsuyoshi Saijo, 2021. "Are societies becoming proself? A topographical difference under fast urbanization in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12976-12993, September.
    19. Fan, Fan & Henriksen, Christian Bugge & Porter, John, 2016. "Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input," Ecosystem Services, Elsevier, vol. 22(PA), pages 117-127.
    20. Vorstius, Anne Carolin & Spray, Christopher J., 2015. "A comparison of ecosystem services mapping tools for their potential to support planning and decision-making on a local scale," Ecosystem Services, Elsevier, vol. 15(C), pages 75-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:697-:d:1395743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.