IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i8p1527-d1208407.html
   My bibliography  Save this article

Ecosystem Service Flow Perspective of Urban Green Land: Spatial Simulation and Driving Factors of Cooling Service Flow

Author

Listed:
  • Yanru Zhou

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Zhe Feng

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Technology Innovation Center of Land Engineering, Ministry of Natural Resources (MNR), Beijing 100035, China
    Key Laboratory of Land Consolidation, Ministry of Natural Resources (MNR), Beijing 100035, China)

  • Kaiji Xu

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Kening Wu

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Technology Innovation Center of Land Engineering, Ministry of Natural Resources (MNR), Beijing 100035, China
    Key Laboratory of Land Consolidation, Ministry of Natural Resources (MNR), Beijing 100035, China)

  • Hong Gao

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Peijia Liu

    (School of Politics and Public Administration, Zhengzhou University, Zhengzhou 450001, China
    Henan Academy of Geology, Zhengzhou 450001, China
    Public Administration Research Center, Zhengzhou University, Zhengzhou 450001, China)

Abstract

The linking of ecosystem service flows (ESFs) with urban land management is still in its nascent stage. The spatial process modeling of ESFs plays a crucial role in establishing connections between urban land sustainability and human benefits. However, the spatial processes and driving mechanisms associated with urban cooling services (UCS) remain ambiguous. In this study, we selected the area within the 6th Ring Road of Beijing as the study area, where the population is highly concentrated and the urban greenery is relatively developed. We modeled the spatial processes of cooling service flow (UCSF) in this area and elucidated the contribution of landscape patterns to UCSF. Firstly, the cooling capacity, referred to as UCS, of the urban blue–green landscape, was estimated using the InVEST tool. Subsequently, the UCSF spatial process was simulated by employing a two-dimensional Gaussian function at the pixel level. In order to characterize the landscape features in the study area, eight landscape indices were selected, and Fragstats v4.2 was employed for their calculation. Finally, GeoDetector was utilized to explore the driving mechanisms of landscape patterns on UCSF. The predominant area for both UCS and UCSF lies between the 5th and 6th Ring Road in Beijing, exhibiting a declining trend from the 6th Ring Road toward the city center. The UCSF coverage area, which represents the beneficiary area, accounted for approximately 87.78% of the study area, with the largest increase occurring within the 2nd Ring Road. The Landscape Shape Index demonstrated the strongest individual contribution to UCSF, while its combined bivariate contribution was significant. Geometry exerted a greater influence on UCSF compared to landscape scale and spatial configuration. This study presents novel insights for assessing the omnidirectional flow of ESFs through the modeling of flow functions. The findings of this study can serve as a valuable reference for sustainable urban landscape management and planning.

Suggested Citation

  • Yanru Zhou & Zhe Feng & Kaiji Xu & Kening Wu & Hong Gao & Peijia Liu, 2023. "Ecosystem Service Flow Perspective of Urban Green Land: Spatial Simulation and Driving Factors of Cooling Service Flow," Land, MDPI, vol. 12(8), pages 1-16, August.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1527-:d:1208407
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/8/1527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/8/1527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Lan & Haiping, Tang & Haoguang, Liang, 2017. "A theoretical framework for researching cultural ecosystem service flows in urban agglomerations," Ecosystem Services, Elsevier, vol. 28(PA), pages 95-104.
    2. Zhenci Xu & Sophia N. Chau & Xiuzhi Chen & Jian Zhang & Yingjie Li & Thomas Dietz & Jinyan Wang & Julie A. Winkler & Fan Fan & Baorong Huang & Shuxin Li & Shaohua Wu & Anna Herzberger & Ying Tang & De, 2020. "Assessing progress towards sustainable development over space and time," Nature, Nature, vol. 577(7788), pages 74-78, January.
    3. Zardo, L. & Geneletti, D. & Pérez-Soba, M. & Van Eupen, M., 2017. "Estimating the cooling capacity of green infrastructures to support urban planning," Ecosystem Services, Elsevier, vol. 26(PA), pages 225-235.
    4. Vrebos, Dirk & Staes, Jan & Vandenbroucke, Tom & D׳Haeyer, Tom & Johnston, Robyn & Muhumuza, Moses & Kasabeke, Clovis & Meire, Patrick, 2015. "Mapping ecosystem service flows with land cover scoring maps for data-scarce regions," Ecosystem Services, Elsevier, vol. 13(C), pages 28-40.
    5. Feurer, Melanie & Rueff, Henri & Celio, Enrico & Heinimann, Andreas & Blaser, Juergen & Htun, Aung Myin & Zaehringer, Julie Gwendolin, 2021. "Regional scale mapping of ecosystem services supply, demand, flow and mismatches in Southern Myanmar," Ecosystem Services, Elsevier, vol. 52(C).
    6. Fisher, Brendan & Turner, R. Kerry & Morling, Paul, 2009. "Defining and classifying ecosystem services for decision making," Ecological Economics, Elsevier, vol. 68(3), pages 643-653, January.
    7. Schröter, Matthias & Koellner, Thomas & Alkemade, Rob & Arnhold, Sebastian & Bagstad, Kenneth J. & Erb, Karl-Heinz & Frank, Karin & Kastner, Thomas & Kissinger, Meidad & Liu, Jianguo & López-Hoffman, 2018. "Interregional flows of ecosystem services: Concepts, typology and four cases," Ecosystem Services, Elsevier, vol. 31(PB), pages 231-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianlin Zhai & Yuanbo Ma & Ying Fang & Mingyuan Chang & Longyang Huang & Ziyi Ma & Ling Li & Chenchen Zhao, 2024. "Research on the Optimization of Urban Ecological Infrastructure Based on Ecosystem Service Supply, Demand, and Flow," Land, MDPI, vol. 13(2), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lijuan & Zheng, Hua & Chen, Yongzhe & Ouyang, Zhiyun & Hu, Xiaofei, 2022. "Systematic review of ecosystem services flow measurement: Main concepts, methods, applications and future directions," Ecosystem Services, Elsevier, vol. 58(C).
    2. Chalkiadakis, Charis & Drakou, Evangelia G. & Kraak, Menno-Jan, 2022. "Ecosystem service flows: A systematic literature review of marine systems," Ecosystem Services, Elsevier, vol. 54(C).
    3. Wang, Zhuangzhuang & Zhang, Liwei & Li, Xupu & Li, Yingjie & Frans, Veronica F. & Yan, Junping, 2020. "A network perspective for mapping freshwater service flows at the watershed scale," Ecosystem Services, Elsevier, vol. 45(C).
    4. Wenbo Cai & Tong Wu & Wei Jiang & Wanting Peng & Yongli Cai, 2020. "Integrating Ecosystem Services Supply–Demand and Spatial Relationships for Intercity Cooperation: A Case Study of the Yangtze River Delta," Sustainability, MDPI, vol. 12(10), pages 1-24, May.
    5. Maria Susana Orta Ortiz & Davide Geneletti, 2018. "Assessing Mismatches in the Provision of Urban Ecosystem Services to Support Spatial Planning: A Case Study on Recreation and Food Supply in Havana, Cuba," Sustainability, MDPI, vol. 10(7), pages 1-21, June.
    6. Zhe Cheng & Tianyu Zhao & Tao Song & Li Cui & Xinfa Zhou, 2022. "Assessing the Spatio-Temporal Pattern and Development Characteristics of Regional Ecological Resources for Sustainable Development: A Case Study on Guizhou Province, China," Land, MDPI, vol. 11(6), pages 1-18, June.
    7. Haixia Zhao & Binjie Gu & Jinding Fan & Junqi Wang & Liancong Luo, 2023. "Socioeconomic Factors Influence the Spatial and Temporal Distribution of Blue–Green Infrastructure Demand: A Case of Nanjing City," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    8. Yu Xiao & Gaodi Xie & Lin Zhen & Chunxia Lu & Jie Xu, 2017. "Identifying the Areas Benefitting from the Prevention of Wind Erosion by the Key Ecological Function Area for the Protection of Desertification in Hunshandake, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    9. Uta Schirpke & Lukas Egarter Vigl & Erich Tasser & Ulrike Tappeiner, 2019. "Analyzing Spatial Congruencies and Mismatches between Supply, Demand and Flow of Ecosystem Services and Sustainable Development," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    10. Meng, Shiting & Huang, Qingxu & Zhang, Ling & He, Chunyang & Inostroza, Luis & Bai, Yansong & Yin, Dan, 2020. "Matches and mismatches between the supply of and demand for cultural ecosystem services in rapidly urbanizing watersheds: A case study in the Guanting Reservoir basin, China," Ecosystem Services, Elsevier, vol. 45(C).
    11. Vilém Pechanec & Helena Kilianová & Elwis Tangwa & Alena Vondráková & Ivo Machar, 2019. "What is the Development Capacity for Provision of Ecosystem Services in the Czech Republic?," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    12. Brück, Maria & Abson, David J. & Fischer, Joern & Schultner, Jannik, 2022. "Broadening the scope of ecosystem services research: Disaggregation as a powerful concept for sustainable natural resource management," Ecosystem Services, Elsevier, vol. 53(C).
    13. Finisdore, John & Rhodes, Charles & Haines-Young, Roy & Maynard, Simone & Wielgus, Jeffrey & Dvarskas, Anthony & Houdet, Joel & Quétier, Fabien & Lamothe, Karl A. & Ding, Helen & Soulard, François &, 2020. "The 18 benefits of using ecosystem services classification systems," Ecosystem Services, Elsevier, vol. 45(C).
    14. Tianlin Zhai & Yuanbo Ma & Ying Fang & Mingyuan Chang & Longyang Huang & Ziyi Ma & Ling Li & Chenchen Zhao, 2024. "Research on the Optimization of Urban Ecological Infrastructure Based on Ecosystem Service Supply, Demand, and Flow," Land, MDPI, vol. 13(2), pages 1-25, February.
    15. Retallack, Matthew, 2021. "The intersection of economic demand for ecosystem services and public policy: A watershed case study exploring implications for social-ecological resilience," Ecosystem Services, Elsevier, vol. 50(C).
    16. Wei, Hejie & Fan, Weiguo & Wang, Xuechao & Lu, Nachuan & Dong, Xiaobin & Zhao, Yanan & Ya, Xijia & Zhao, Yifei, 2017. "Integrating supply and social demand in ecosystem services assessment: A review," Ecosystem Services, Elsevier, vol. 25(C), pages 15-27.
    17. Wright, William C.C. & Eppink, Florian V. & Greenhalgh, Suzie, 2017. "Are ecosystem service studies presenting the right information for decision making?," Ecosystem Services, Elsevier, vol. 25(C), pages 128-139.
    18. Pandeya, B. & Buytaert, W. & Zulkafli, Z. & Karpouzoglou, T. & Mao, F. & Hannah, D.M., 2016. "A comparative analysis of ecosystem services valuation approaches for application at the local scale and in data scarce regions," Ecosystem Services, Elsevier, vol. 22(PB), pages 250-259.
    19. Rachel Dolan & James M. Bullock & Julia P. G. Jones & Ioannis N. Athanasiadis & Javier Martinez-Lopez & Simon Willcock, 2021. "The Flows of Nature to People, and of People to Nature: Applying Movement Concepts to Ecosystem Services," Land, MDPI, vol. 10(6), pages 1-18, May.
    20. Cortinovis, Chiara & Geneletti, Davide, 2019. "A framework to explore the effects of urban planning decisions on regulating ecosystem services in cities," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1527-:d:1208407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.