IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i7p1306-d1181785.html
   My bibliography  Save this article

Cultivation and Nitrogen Management Practices Effect on Soil Carbon Fractions, Greenhouse Gas Emissions, and Maize Production under Dry-Land Farming System

Author

Listed:
  • Honglei Ren

    (Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China)

  • Shengjun Xu

    (Gansu Academy of Agricultural Sciences, Lanzhou 730070, China)

  • Fengyi Zhang

    (Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China)

  • Mingming Sun

    (Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China)

  • Ruiping Zhang

    (Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China)

Abstract

Effective nitrogen management practices by using two cultivation techniques can improve corn productivity and soil carbon components such as soil carbon storage, microbial biomass carbon (MBC), carbon management index (CMI), and water-soluble carbon (WSC). It is essential to ensure the long-term protection of dry-land agricultural systems. However, excessive application of nitrogen fertilizer reduces the efficiency of nitrogen use and also leads to increased greenhouse gas emissions from farming soil and several other ecological problems. Therefore, we conducted field trials under two planting methods during 2019–2020: P: plastic mulching ridges; F: traditional flat planting with nitrogen management practices, i.e., 0: no nitrogen fertilizer; FN: a common nitrogen fertilizer rate for farmers of 290 kg ha −1 ; ON: optimal nitrogen application rate of 230 kg ha −1 ; ON75%+DCD : 25% reduction in optimal nitrogen fertilizer rate + dicyandiamide; ON75%+NC : 25% reduction in optimal nitrogen rate + nano-carbon. The results showed that compared to other treatments, the PON75%+DCD treatment significantly increased soil water storage, water use efficiency (WUE), and nitrogen use efficiency (NUE) because total evapotranspiration (ET) and GHG were reduced. Under the P ON75%+DCD or P ON75%+NC , the soil carbon storage significantly (50% or 47%) increased. The P ON75%+DCD treatment is more effective in improving MBC, CMI, and WSC, although it increases gaseous carbon emissions more than all other treatments. Compared with FFN, under the P ON75%+DCD treatment, the overall CH 4 , N 2 O, and CO 2 emissions are all reduced. Under the P ON75%+DCD treatment, the area scale GWP (52.7%), yield scale GWP (90.3%), biomass yield (22.7%), WUE (42.6%), NUE (80.0%), and grain yield (32.1%) significantly increased compared with F FN , which might offset the negative ecological impacts connected with climate change. The P ON75%+DCD treatment can have obvious benefits in terms of increasing yield and reducing emissions. It can be recommended to ensure future food security and optimal planting and nitrogen management practices in response to climate change.

Suggested Citation

  • Honglei Ren & Shengjun Xu & Fengyi Zhang & Mingming Sun & Ruiping Zhang, 2023. "Cultivation and Nitrogen Management Practices Effect on Soil Carbon Fractions, Greenhouse Gas Emissions, and Maize Production under Dry-Land Farming System," Land, MDPI, vol. 12(7), pages 1-16, June.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1306-:d:1181785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/7/1306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/7/1306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    2. Adhikari, Raju & Bristow, Keith L. & Casey, Philip S. & Freischmidt, George & Hornbuckle, John W. & Adhikari, Benu, 2016. "Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency," Agricultural Water Management, Elsevier, vol. 169(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    3. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    4. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    6. Chen, Keyuan & Ali, Shahzad & Chen, Yanyun & Manzoor, & Sohail, Amir & Jan, Amanullah & Inamullah, & Fahad, Shah, 2018. "Effect of ridge-covering mulching materials on hormonal changes, antioxidative enzyme activities and production of maize in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 204(C), pages 281-291.
    7. Zhang, Peng & Wei, Ting & Han, Qingfang & Ren, Xiaolong & Jia, Zhikuan, 2020. "Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Braunack, Michael V. & Zaja, Adriana & Tam, Kang & Filipović, Lana & Filipović, Vilim & Wang, Yusong & Bristow, Keith L., 2020. "A Sprayable Biodegradable Polymer Membrane (SBPM) technology: Effect of band width and application rate on water conservation and seedling emergence," Agricultural Water Management, Elsevier, vol. 230(C).
    9. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    10. Yin, Minhua & Li, Yuannong & Fang, Heng & Chen, Pengpeng, 2019. "Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth," Agricultural Water Management, Elsevier, vol. 216(C), pages 127-137.
    11. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    12. Cristina Abbate & Aurelio Scavo & Gaetano Roberto Pesce & Stefania Fontanazza & Alessia Restuccia & Giovanni Mauromicale, 2023. "Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review," Agriculture, MDPI, vol. 13(1), pages 1-30, January.
    13. Ahmad, Irshad & Yan, Zhengang & Kamran, Muhammad & Ikram, Khushnuma & Ghani, Muhammad Usman & Hou, Fujiang, 2022. "Nitrogen management and supplemental irrigation affected greenhouse gas emissions, yield and nutritional quality of fodder maize in an arid region," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    15. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    16. Cai, Wenjing & Gu, Xiaobo & Du, Yadan & Chang, Tian & Lu, Shiyu & Zheng, Xiaobo & Bai, Dongping & Song, Hui & Sun, Shikun & Cai, Huanjie, 2022. "Effects of mulching on water saving, yield increase and emission reduction for maize in China," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Zong, Rui & Wang, Zhenhua & Zhang, Jinzhu & Li, Wenhao, 2021. "The response of photosynthetic capacity and yield of cotton to various mulching practices under drip irrigation in Northwest China," Agricultural Water Management, Elsevier, vol. 249(C).
    18. Zhang, Chun & Dong, Zhaoyun & Guo, Qin & Hu, Zhilin & Li, Juan & Wei, Ting & Ding, Ruixia & Cai, Tie & Ren, Xiaolong & Han, Qingfang & Zhang, Peng & Jia, Zhikuan, 2022. "Ridge–furrow rainwater harvesting combined with supplementary irrigation: Water-saving and yield-maintaining mode for winter wheat in a semiarid region based on 8-year in-situ experiment," Agricultural Water Management, Elsevier, vol. 259(C).
    19. Xia Gao & Chenxing Fu & Mingxiao Li & Xuejiao Qi & Xuan Jia, 2022. "Effects of Biodegradation of Corn-Starch–Sodium-Alginate-Based Liquid Mulch Film on Soil Microbial Functions," IJERPH, MDPI, vol. 19(14), pages 1-14, July.
    20. Jia, Qianmin & Xu, Ranran & Chang, Shenghua & Zhang, Cheng & Liu, Yongjie & Shi, Wei & Peng, Zechen & Hou, Fujiang, 2020. "Planting practices with nutrient strategies to improves productivity of rain-fed corn and resource use efficiency in semi-arid regions," Agricultural Water Management, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1306-:d:1181785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.