IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1220-d878796.html
   My bibliography  Save this article

Towards Sustainable Management of Urban Ecological Space: A Zoning Approach Hybridized by Ecosystem Service Value and Ecological Risk Assessment

Author

Listed:
  • Yuzhe Wu

    (School of Public Affairs, Zhejiang University, Hangzhou 310058, China)

  • Chenzhuo Gu

    (School of Public Affairs, Zhejiang University, Hangzhou 310058, China
    Center for Balance Architecture, Zhejiang University, Hangzhou 310063, China)

  • Yingnan Zhang

    (School of Public Affairs, Zhejiang University, Hangzhou 310058, China)

Abstract

Massive growth is posing threat to the ecological security and sustainability of cities. Ecosystem service value (ESV) and ecological risk index (ERI) assessment can be conducted to enhance urban ecosystem management through the enhanced recognition of these values and risks in decision-making. This paper aimed to measure spatiotemporal ESV and ERI for Shizuishan City located in central China, and, based on this, how to zone urban ecological space using land cover data (for the years 2010, 2015, and 2020). The management options of different zones were suggested to mitigate and manage any potential negative impacts on urban ecological security. Results show that: (1) The spatial distribution characteristic of ESV is “high in the south and low in the north”. The total ESV exhibited an upward tendency from 2010 to 2020. (2) The high-ERI areas were distributed in the peripheral region, while the low-ERI areas were concentrated in the central region. The ERI of water was in decline continuously, whereas the ERI of wetland maintained a high level. (3) The zoning approach integrating ESV and ERI assessment can truly reflect the status of the environment and better clarify the direction of ecological development for different areas. Among four different ecological zones, the high-ESV and low-ERI areas (I) have abundant ecological resources, and they are set as “Priority Development Areas”. The low-ESV and low-ERI areas (II) are set as “Ecological Improvement Areas” because the area of ecological lands are confined. The low-ESV and high-ERI areas (III) have a fragile ecological environment, and they are set as “Exploitation-Prohibited Areas”. The high-ESV and high-ERI areas (IV) are mainly distributed near water and wetland, and they are set as “Research-focused Areas”.

Suggested Citation

  • Yuzhe Wu & Chenzhuo Gu & Yingnan Zhang, 2022. "Towards Sustainable Management of Urban Ecological Space: A Zoning Approach Hybridized by Ecosystem Service Value and Ecological Risk Assessment," Land, MDPI, vol. 11(8), pages 1-19, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1220-:d:878796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bohao Cui & Yili Zhang & Zhaofeng Wang & Changjun Gu & Linshan Liu & Bo Wei & Dianqing Gong & Mohan Kumar Rai, 2022. "Ecological Risk Assessment of Transboundary Region Based on Land-Cover Change: A Case Study of Gandaki River Basin, Himalayas," Land, MDPI, vol. 11(5), pages 1-22, April.
    2. Chunfen Zeng & Jun He & Qingqing He & Yuqing Mao & Boya Yu, 2022. "Assessment of Land Use Pattern and Landscape Ecological Risk in the Chengdu-Chongqing Economic Circle, Southwestern China," Land, MDPI, vol. 11(5), pages 1-17, April.
    3. Wolde Mekuria & Merga Diyasa & Anna Tengberg & Amare Haileslassie, 2021. "Effects of Long-Term Land Use and Land Cover Changes on Ecosystem Service Values: An Example from the Central Rift Valley, Ethiopia," Land, MDPI, vol. 10(12), pages 1-17, December.
    4. Daowei Zhang & Anne Stenger, 2015. "Value and valuation of forest ecosystem services," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(2), pages 129-140, July.
    5. Jian Peng & Minli Zong & Yi'na Hu & Yanxu Liu & Jiansheng Wu, 2015. "Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China," Sustainability, MDPI, vol. 7(7), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiangfu Liao & Lina Tang & Guofan Shao, 2022. "Multi-Scenario Simulation to Predict Ecological Risk Posed by Urban Sprawl with Spontaneous Growth: A Case Study of Quanzhou," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    2. Xueqing Wang & Zhongyi Ding & Shaoliang Zhang & Huping Hou & Zanxu Chen & Qinyu Wu, 2022. "Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China," Land, MDPI, vol. 12(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueqing Wang & Zhongyi Ding & Shaoliang Zhang & Huping Hou & Zanxu Chen & Qinyu Wu, 2022. "Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China," Land, MDPI, vol. 12(1), pages 1-16, December.
    2. Tian Liang & Fei Yang & Dan Huang & Yinchen Luo & You Wu & Chuanhao Wen, 2022. "Land-Use Transformation and Landscape Ecological Risk Assessment in the Three Gorges Reservoir Region Based on the “Production–Living–Ecological Space” Perspective," Land, MDPI, vol. 11(8), pages 1-13, August.
    3. Zipeng Chen & Yongqiang Liu & Shuangshuang Tu, 2022. "Comprehensive Eco-Environmental Effects Caused by Land Use Transition from the Perspective of Production–Living–Ecological Spaces in a Typical Region: A Case Study of the Guangxi Zhuang Autonomous Reg," Land, MDPI, vol. 11(12), pages 1-22, November.
    4. Qian Zhou & Feng Gui & Benxuan Zhao & Jingyi Liu & Huiwen Cai & Kaida Xu & Sheng Zhao, 2024. "Examining the Social Costs of Carbon Emissions and the Ecosystem Service Value in Island Ecosystems: An Analysis of the Zhoushan Archipelago," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    5. Ziyang Wang & Peiji Shi & Jing Shi & Xuebin Zhang & Litang Yao, 2023. "Research on Land Use Pattern and Ecological Risk of Lanzhou–Xining Urban Agglomeration from the Perspective of Terrain Gradient," Land, MDPI, vol. 12(5), pages 1-20, April.
    6. Yajing Shao & Xuefeng Yuan & Chaoqun Ma & Ruifang Ma & Zhaoxia Ren, 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 12(11), pages 1-20, May.
    7. Fangfang Xun & Yecui Hu & Ling Lv & Jinhui Tong, 2017. "Farmers’ Awareness of Ecosystem Services and the Associated Policy Implications," Sustainability, MDPI, vol. 9(9), pages 1-13, September.
    8. Lili Zhang & Baoqing Hu & Ze Zhang & Gaodou Liang & Simin Huang, 2023. "Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation," Land, MDPI, vol. 12(4), pages 1-25, March.
    9. Xinmin Zhang & Hualin Xie & Jiaying Shi & Tiangui Lv & Caihua Zhou & Wangda Liu, 2020. "Assessing Changes in Ecosystem Service Values in Response to Land Cover Dynamics in Jiangxi Province, China," IJERPH, MDPI, vol. 17(9), pages 1-15, April.
    10. Lili Du & Yunbing Hou & Shuheng Zhong & Kai Qu, 2023. "Identification of Priority Areas for Ecological Restoration in Coal Mining Areas with a High Groundwater Table Based on Ecological Security Pattern and Ecological Vulnerability," Sustainability, MDPI, vol. 16(1), pages 1-22, December.
    11. Shiliang Liu & Yuhong Dong & Hua Liu & Fangfang Wang & Lu Yu, 2023. "Review of Valuation of Forest Ecosystem Services and Realization Approaches in China," Land, MDPI, vol. 12(5), pages 1-16, May.
    12. Jiayi Zhou & Kangning Xiong & Qi Wang & Jiuhan Tang & Li Lin, 2022. "A Review of Ecological Assets and Ecological Products Supply: Implications for the Karst Rocky Desertification Control," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    13. Josset, Clement & Shanafelt, David W. & Abildtrup, Jens & Stenger, Anne, 2023. "Probabilistic typology of private forest owners: A tool to target the development of new market for ecosystem services," Land Use Policy, Elsevier, vol. 134(C).
    14. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    15. Anne Stenger & Patrice Harou, 2015. "Special issue on forest investments profitability," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(2), pages 125-128, July.
    16. Zeng, Lijun & Guo, Jiaqi & Wang, Bingcheng & Lv, Jun & Wang, Qin, 2019. "Analyzing sustainability of Chinese coal cities using a decision tree modeling approach," Resources Policy, Elsevier, vol. 64(C).
    17. Yuhan Yu & Mengmeng Yu & Lu Lin & Jiaxin Chen & Dongjie Li & Wenting Zhang & Kai Cao, 2019. "National Green GDP Assessment and Prediction for China Based on a CA-Markov Land Use Simulation Model," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    18. Yuqing Zhao & Zenglin Han & Xiaolu Yan & Xuezhe Wang, 2022. "Integrating Spatial Heterogeneity into an Analysis between Ecosystem Service Value and Its Driving Factors: A Case Study of Dalian, China," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    19. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    20. Liu Yang & Hongzan Jiao, 2022. "Spatiotemporal Changes in Ecosystem Services Value and Its Driving Factors in the Karst Region of China," Sustainability, MDPI, vol. 14(11), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1220-:d:878796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.