IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i2p316-d754720.html
   My bibliography  Save this article

Analyzing the Effects of Land Cover Change on the Water Balance for Case Study Watersheds in Different Forested Ecosystems in the USA

Author

Listed:
  • Nathan C. Healey

    (KBR, Inc., Contractor to the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198, USA)

  • Jennifer A. Rover

    (U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198, USA)

Abstract

We analyzed impacts of interannual disturbance on the water balance of watersheds in different forested ecosystem case studies across the United States from 1985 to 2016 using a remotely sensed long-term land cover monitoring record (U.S. Geological Survey Land Change Monitoring, Assessment, and Projection (LCMAP) Collection 1.0 Science products), gridded precipitation and evaporation data, and streamgaging data using paired watersheds (high and low disturbance). LCMAP products were used to quantify the timing and degree of interannual disturbance and to gain a better understanding of how land cover change affects the water balance of disturbed watersheds. In this paper, we present how LCMAP science products can be used to improve knowledge for hydrologic modeling, climate research, and forest management. Anthropogenic influences (e.g., dams and irrigation diversions) often minimize the impacts of land cover change on water balance dynamics when compared to interannual fluctuations of hydroclimatic events (e.g., drought and flooding). Our findings show that each watershed exhibits a complex suite of influences involving climate variables and other factors that affect each of their water balances differently when land cover change occurs. In this study, forests within arid to semi-arid climates experience greater water balance effects from land cover change than watersheds where water is less limited.

Suggested Citation

  • Nathan C. Healey & Jennifer A. Rover, 2022. "Analyzing the Effects of Land Cover Change on the Water Balance for Case Study Watersheds in Different Forested Ecosystems in the USA," Land, MDPI, vol. 11(2), pages 1-43, February.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:2:p:316-:d:754720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/2/316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/2/316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    2. Peter A. Raymond & Neung-Hwan Oh & R. Eugene Turner & Whitney Broussard, 2008. "Anthropogenically enhanced fluxes of water and carbon from the Mississippi River," Nature, Nature, vol. 451(7177), pages 449-452, January.
    3. Lindsay A. Bearup & Reed M. Maxwell & David W. Clow & John E. McCray, 2014. "Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds," Nature Climate Change, Nature, vol. 4(6), pages 481-486, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    3. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    4. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    5. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    6. Hsin-Yu Chen & Yu-Hsiang Hsu & Chia-Chi Huang & Hsin-Fu Yeh, 2023. "Baseflow Variation in Southern Taiwan Basin," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    7. Catherine Araujo Bonjean & Alioune N’diaye & Olivier Santoni, 2019. "Who benefits from the return of the rains? The case of the Ferlo breeders in Senegal [A qui profite le retour des pluies ? Le cas des éleveurs du Ferlo]," CERDI Working papers halshs-02419601, HAL.
    8. Roquia Salam & Abu Reza Md. Towfiqul Islam & Shakibul Islam, 2020. "Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4509-4535, June.
    9. Jing Xu & Ping Zhao & Johnny C. L. Chan & Mingyuan Shi & Chi Yang & Siyu Zhao & Ying Xu & Junming Chen & Ling Du & Jie Wu & Jiaxin Ye & Rui Xing & Huimei Wang & Lu Liu, 2024. "Increasing tropical cyclone intensity in the western North Pacific partly driven by warming Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    11. Uilson Ricardo Venâncio Aires & Demetrius David Silva & Michel Castro Moreira & Carlos Antônio Alvares Soares Ribeiro & Celso Bandeira de Melo Ribeiro, 2020. "The Use of the Normalized Difference Vegetation Index to Analyze the Influence of Vegetation Cover Changes on the Streamflow in the Manhuaçu River Basin, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1933-1949, April.
    12. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    13. Hsin-Yu Chen & Chia-Chi Huang & Hsin-Fu Yeh, 2021. "Quantifying the Relative Contribution of the Climate Change and Human Activity on Runoff in the Choshui River Alluvial Fan, Taiwan," Land, MDPI, vol. 10(8), pages 1-14, August.
    14. Xue Zhong & Xiaohui Jiang & Leilei Li & Jing Xu & Huanyu Xu, 2020. "The Impact of Socio-Economic Factors on Sediment Load: A Case Study of the Yanhe River Watershed," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    15. Dario Camuffo & Antonio della Valle & Francesca Becherini & Valeria Zanini, 2020. "Three centuries of daily precipitation in Padua, Italy, 1713–2018: history, relocations, gaps, homogeneity and raw data," Climatic Change, Springer, vol. 162(2), pages 923-942, September.
    16. Ijaz Ahmad & Li Wang & Faisal Ali & Fan Zhang, 2022. "Spatiotemporal Patterns of Extreme Precipitation Events over Jhelum River Basin," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    17. Yuke Zhou & Junfu Fan & Xiaoying Wang, 2020. "Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-25, June.
    18. Tweneboah Senzu, Emmanuel, 2020. "Modern currency exchange rate behaviour and proposed trend-like forecasting model," MPRA Paper 99933, University Library of Munich, Germany.
    19. Solomon Temidayo Owolabi & Johanes A. Belle & Sonwabo Mazinyo, 2022. "Quantifying Intra-Catchment Streamflow Processes and Response to Climate Change within a Climatic Transitional Zone: A Case Study of Buffalo Catchment, Eastern Cape, South Africa," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    20. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:2:p:316-:d:754720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.