IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i8p822-d608879.html
   My bibliography  Save this article

Formative and Summative Validation of Building Information Model-Based Cadastral Data

Author

Listed:
  • Ali Asghari

    (The Centre for Spatial Data Infrastructures and Land Administration, Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia)

  • Mohsen Kalantari

    (The Centre for Spatial Data Infrastructures and Land Administration, Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia)

  • Abbas Rajabifard

    (The Centre for Spatial Data Infrastructures and Land Administration, Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia)

Abstract

Among 3D models, Building Information Models (BIM) can potentially support the integrated management of buildings’ physical and legal aspects in cadastres. However, there is not a systematic approach to author the cadastral information into the BIM models. Moreover, the common approaches for data validation only check the final cadastral output, and they ignore the data generation steps as potential avenues for validation. Therefore, this study aims to develop the criteria and standards to check the spatial consistency and integrity of BIM-based cadastral data in the process of generating the data. The paper utilises a case study approach as its methodology to investigate the requirements of generating a BIM-based cadastral model and identify the issues within the process. The results include a formative assessment (i.e., multistep validation approach during the data generation) alongside a summative assessment (i.e., one-step validation approach at the end of data generation). This study found the summative assessment alone insufficient for 3D cadastral data validation. The paper concludes that a formative and summative assessment together can improve the validity of the data. The results will potentially bring more efficiency to modern land administration processes by avoiding the accumulation of errors in 3D cadastral data generation.

Suggested Citation

  • Ali Asghari & Mohsen Kalantari & Abbas Rajabifard, 2021. "Formative and Summative Validation of Building Information Model-Based Cadastral Data," Land, MDPI, vol. 10(8), pages 1-26, August.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:822-:d:608879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/8/822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/8/822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asghari, Ali & Kalantari, Mohsen & Rajabifard, Abbas, 2020. "A structured framework for 3D cadastral data validation − a case study for Victoria, Australia," Land Use Policy, Elsevier, vol. 98(C).
    2. Shojaei, Davood & Olfat, Hamed & Quinones Faundez, Sebastian Ignacio & Kalantari, Mohsen & Rajabifard, Abbas & Briffa, Mark, 2017. "Geometrical data validation in 3D digital cadastre − A case study for Victoria, Australia," Land Use Policy, Elsevier, vol. 68(C), pages 638-648.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajji, Rafika & El Asri, Hanae & Ez-Zriouli, Chaymae, 2023. "Upgrading to 3D cadastre in Morocco: Lessons learned from benchmarking of international 3D cadastral systems," Land Use Policy, Elsevier, vol. 128(C).
    2. Hamed Olfat & Behnam Atazadeh & Farshad Badiee & Yiqun Chen & Davood Shojaei & Abbas Rajabifard, 2021. "A Proposal for Streamlining 3D Digital Cadastral Data Lifecycle," Land, MDPI, vol. 10(6), pages 1-16, June.
    3. Katarzyna Kocur-Bera & Hubert Frąszczak, 2021. "Coherence of Cadastral Data in Land Management—A Case Study of Rural Areas in Poland," Land, MDPI, vol. 10(4), pages 1-15, April.
    4. Jaljolie, Ruba & Riekkinen, Kirsikka & Dalyot, Sagi, 2021. "A topological-based approach for determining spatial relationships of complex volumetric parcels in land administration systems," Land Use Policy, Elsevier, vol. 109(C).
    5. Barzegar, Maryam & Rajabifard, Abbas & Kalantari, Mohsen & Atazadeh, Behnam, 2021. "A framework for spatial analysis in 3D urban land administration – A case study for Victoria, Australia," Land Use Policy, Elsevier, vol. 111(C).
    6. Jarosław Bydłosz & Agnieszka Bieda, 2020. "Developing a UML Model for the 3D Cadastre in Poland," Land, MDPI, vol. 9(11), pages 1-16, November.
    7. Bahram Saeidian & Abbas Rajabifard & Behnam Atazadeh & Mohsen Kalantari, 2021. "Underground Land Administration from 2D to 3D: Critical Challenges and Future Research Directions," Land, MDPI, vol. 10(10), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:822-:d:608879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.