IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p14630-d966272.html
   My bibliography  Save this article

Hydrodynamic Modelling and Flood Risk Analysis of Urban Catchments under Multiple Scenarios: A Case Study of Dongfeng Canal District, Zhengzhou

Author

Listed:
  • Huaibin Wei

    (School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Liyuan Zhang

    (School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Jing Liu

    (College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
    Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, China)

Abstract

In recent years, urban flooding has become an increasingly serious problem, posing a serious threat to socio-economic development and personal safety. In this paper, we consider the Dongfeng Canal area in Zhengzhou City as an example and build a 1D/2D coupled urban flood model using the InfoWorks ICM. This study area uses six scenarios with rainfall return periods of 5 a, 20 a, and 50 a, corresponding to rainfall ephemeris of 1 h and 2 h to assess the flood risk. The results of the study show that (1) The flood depth, inundation duration, and extent of inundation in the study area vary with the return period and rainfall history. Generally, most of the water accumulation is concentrated in the low-lying areas adjacent to the river and near the roadbed. (2) As the rainfall recurrence period and rainfall duration increase, the proportion of overflow at the nodes becomes more pronounced and the overload from the pipe network flows mainly to the overload. (3) The high-risk areas under the different scenarios are mainly distributed on both sides of the river, and most of the low-risk areas transform into medium- and high-risk areas as the rainfall recurrence period and rainfall duration increase. This study analyses the flood risk situation under different scenarios, as well as the elements and areas that should be monitored in case of flooding, with the aim of providing a reference for flood prevention and control in the study area and formulating corresponding countermeasures. It also serves as a reference for flood risk analysis in other areas with similar situations.

Suggested Citation

  • Huaibin Wei & Liyuan Zhang & Jing Liu, 2022. "Hydrodynamic Modelling and Flood Risk Analysis of Urban Catchments under Multiple Scenarios: A Case Study of Dongfeng Canal District, Zhengzhou," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:14630-:d:966272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/14630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/14630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lariyah Mohd Sidek & Aminah Shakirah Jaafar & Wan Hazdy Azad Wan Abdul Majid & Hidayah Basri & Mohammad Marufuzzaman & Muzad Mohd Fared & Wei Chek Moon, 2021. "High-Resolution Hydrological-Hydraulic Modeling of Urban Floods Using InfoWorks ICM," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    2. Shumei Zhang & Wenshi Zhang & Ying Wang & Xiaoyu Zhao & Peihao Song & Guohang Tian & Audrey L. Mayer, 2020. "Comparing Human Activity Density and Green Space Supply Using the Baidu Heat Map in Zhengzhou, China," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    3. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "A review on applications of urban flood models in flood mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 31-62, August.
    4. Guoqiang Peng & Zhuo Zhang & Tian Zhang & Zhiyao Song & Arif Masrur, 2022. "Bi-directional coupling of an open-source unstructured triangular meshes-based integrated hydrodynamic model for heterogeneous feature-based urban flood simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 719-740, January.
    5. Boyu Feng & Ying Zhang & Robin Bourke, 2021. "Urbanization impacts on flood risks based on urban growth data and coupled flood models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 613-627, March.
    6. Gerardo Benito & Michel Lang & Mariano Barriendos & M. Llasat & Felix Francés & Taha Ouarda & Varyl Thorndycraft & Yehouda Enzel & Andras Bardossy & Denis Coeur & Bernard Bobée, 2004. "Use of Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation. Review of Scientific Methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(3), pages 623-643, March.
    7. Pankaj Mani & Chandranath Chatterjee & Rakesh Kumar, 2014. "Flood hazard assessment with multiparameter approach derived from coupled 1D and 2D hydrodynamic flow model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1553-1574, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Xu & Zhiqiang Xie & Fei Zhao & Yimin Li & Shouquan Yang & Yangbin Zhang & Siqiao Yin & Shi Chen & Xuan Li & Sidong Zhao & Zhiqun Hou, 2022. "Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 661-686, March.
    2. Divya S. Agarwal & Alka Bharat & Thomas Rodding Kjeldsen & Kemi Adeyeye, 2024. "Assessing Impact of Nature Based Solutions on Peak Flow Using HEC-HMS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 1125-1140, February.
    3. Xiaojia Liu & Xi Chen & Yan Huang & Weihong Wang & Mingkan Zhang & Yang Jin, 2023. "Landscape Aesthetic Value of Waterfront Green Space Based on Space–Psychology–Behavior Dimension: A Case Study along Qiantang River (Hangzhou Section)," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    4. Sonu Thaivalappil Sukumaran & Stephen J. Birkinshaw, 2024. "Investigating the Impact of Recent and Future Urbanization on Flooding in an Indian River Catchment," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    5. Gean Carlos Gonzaga da Silva & Priscila Celebrini de Oliveira Campos & Marcelo de Miranda Reis & Igor Paz, 2023. "Spatiotemporal Land Use and Land Cover Changes and Associated Runoff Impact in Itaperuna, Brazil," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    6. Dibyendu Samantaray & Chandranath Chatterjee & Rajendra Singh & Praveen Gupta & Sushma Panigrahy, 2015. "Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 347-372, March.
    7. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    8. Jingtian Ma & Yang Liu & Jiaying Liu & Guosong Fei & Ziwu Fan, 2023. "Modeling and Pilot-Scale Experiment of Hydrodynamic Regulation to Improve the Water Quality of a Plain Urban River Network: A Case Study of Changzhou, China," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    9. Paul E. Todhunter & Rhonda Fietzek-DeVries, 2016. "Natural hydroclimatic forcing of historical lake volume fluctuations at Devils Lake, North Dakota (USA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1515-1532, April.
    10. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    11. repec:zib:zbesmy:v:5:y:2024:i:2:p:98-109 is not listed on IDEAS
    12. Aboubakar Gasirabo & Chen Xi & Baligira R. Hamad & Umwali Dufatanye Edovia, 2023. "A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda," Land, MDPI, vol. 12(9), pages 1-20, September.
    13. Samith Madusanka & Chethika Abenayake & Amila Jayasinghe & Chaminda Perera, 2022. "A Decision-Making Tool for Urban Planners: A Framework to Model the Interdependency among Land Use, Accessibility, Density, and Surface Runoff in Urban Areas," Sustainability, MDPI, vol. 14(1), pages 1-19, January.
    14. Syed Asad Shabbir Bukhari & Imran Shafi & Jamil Ahmad & Hammad Tanveer Butt & Tahir Khurshaid & Imran Ashraf, 2025. "Enhancing flood monitoring and prevention using machine learning and IoT integration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4837-4864, March.
    15. Yijun Shi & Guofang Zhai & Shutian Zhou & Yuwen Lu & Wei Chen & Jinyang Deng, 2019. "How Can Cities Respond to Flood Disaster Risks under Multi-Scenario Simulation? A Case Study of Xiamen, China," IJERPH, MDPI, vol. 16(4), pages 1-18, February.
    16. Engdawork Assefa, 2024. "Urban Land Use Trend and Drivers over the Last Three Decades in Addis Ababa and Impacts to the Sustainable Land Management," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 17(1), pages 119-119, January.
    17. Shanzhong Qi & Shufen Cao & Shunli Hu & Qian Liu, 2024. "Bibliometric analysis on urban flood and waterlogging disasters during the period of 1998—2022," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12595-12612, November.
    18. Xiaoli Du & Mingzhe Yang & Zijie Yin & Xing Fang, 2023. "Influence of Initial Abstraction Ratios in NRCS-CN Model on Runoff Estimation of Permeable Brick Pavement Affected by Clogging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3211-3225, June.
    19. Prachi Pratyasha Jena & Banamali Panigrahi & Chandranath Chatterjee, 2016. "Assessment of Cartosat-1 DEM for Modeling Floods in Data Scarce Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1293-1309, February.
    20. Pingping Luo & Yue Zheng & Yiyi Wang & Shipeng Zhang & Wangqi Yu & Xi Zhu & Aidi Huo & Zhenhong Wang & Bin He & Daniel Nover, 2022. "Comparative Assessment of Sponge City Constructing in Public Awareness, Xi’an, China," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    21. Pengcheng Zhong & Yueyi Liu & Hang Zheng & Jianshi Zhao, 2024. "Detection of Urban Flood Inundation from Traffic Images Using Deep Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 287-301, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:14630-:d:966272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.