IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12262-d926627.html
   My bibliography  Save this article

Dynamic Changes in Soil Phosphorus Accumulation and Bioavailability in Phosphorus-Contaminated Protected Fields

Author

Listed:
  • Hongyue Liang

    (College of Agriculture, Yanbian University, Yanji 133002, China)

  • Chen Wang

    (College of Agriculture, Yanbian University, Yanji 133002, China)

  • Xinrui Lu

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China)

  • Chunmei Sai

    (College of Pharmacy, Jining Medical University, Rizhao 276826, China)

  • Yunjiang Liang

    (College of Agriculture, Yanbian University, Yanji 133002, China)

Abstract

Soil phosphorus accumulation resulting in a high risk of phosphorus pollution is due to high multiple vegetable cropping indexes and excessive fertilizer input in protected fields. Therefore, this study explored the bioavailability of soil-accumulated phosphorus to improve fertilization and reduce the risk of soil phosphorus contamination in protected fields. A field trial was performed in Yanbian Prefecture, China to study the phosphorus bioavailability after continuous spinach planting without phosphate fertilizer applications. Results indicated that with increasing numbers of planting stubbles, soil inorganic phosphorus and occluded phosphorus changed little, while water-soluble and loose phosphorus, aluminum-phosphate, iron-phosphate, and calcium-phosphorus decreased first and then increased. Soil available phosphorus declined linearly. For planting spinach in protected fields, the threshold of soil phosphorus deficiency is 200 mg kg −1 . A soil phosphorus supply potential model was established between x (the soil available phosphorus) and y (the numbers of planting stubbles): y = 6.759 + 0.027 x , R = 0.99, which can be used to predict how planting stubbles are needed to raise the soil available phosphorus above the critical value of phosphorus deficiency for spinach. These results will provide the theoretical guidance for rational phosphorus fertilizer applications and control agricultural, non-point pollution sources in protected fields.

Suggested Citation

  • Hongyue Liang & Chen Wang & Xinrui Lu & Chunmei Sai & Yunjiang Liang, 2022. "Dynamic Changes in Soil Phosphorus Accumulation and Bioavailability in Phosphorus-Contaminated Protected Fields," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12262-:d:926627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jun & Wang, Dejian & Zhang, Gang & Wang, Yuan & Wang, Can & Teng, Ying & Christie, Peter, 2014. "Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention," Agricultural Water Management, Elsevier, vol. 141(C), pages 66-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    2. Tu, Anguo & Xie, Songhua & Mo, Minghao & Song, Yuejun & Li, Ying, 2021. "Water budget components estimation for a mature citrus orchard of southern China based on HYDRUS-1D model," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 654-658.
    4. Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 803-808.
    5. He, Yupu & Jianyun, Zhang & Shihong, Yang & Dalin, Hong & Junzeng, Xu, 2019. "Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization," Agricultural Water Management, Elsevier, vol. 221(C), pages 231-237.
    6. Jiao, Jiaguo & Shi, Kun & Li, Peng & Sun, Zhen & Chang, Dali & Shen, Xueshan & Wu, Di & Song, Xiuchao & Liu, Manqiang & Li, Huixin & Hu, Feng & Xu, Li, 2018. "Assessing of an irrigation and fertilization practice for improving rice production in the Taihu Lake region (China)," Agricultural Water Management, Elsevier, vol. 201(C), pages 91-98.
    7. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2021. "Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Peng Ma & Yan Lan & Xu Lv & Ping Fan & Zhiyuan Yang & Yongjian Sun & Rongping Zhang & Jun Ma, 2021. "Reasonable Nitrogen Fertilizer Management Improves Rice Yield and Quality under a Rapeseed/Wheat–Rice Rotation System," Agriculture, MDPI, vol. 11(6), pages 1-14, May.
    9. Du, Sicheng & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Han, Yu & Song, Jian, 2022. "Fate of each period fertilizer N in Mollisols under water and N management: A 15N tracer study," Agricultural Water Management, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12262-:d:926627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.