IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11292-d909796.html
   My bibliography  Save this article

Impact of Exercise Intensity on Systemic Oxidative Stress, Inflammatory Responses, and Sirtuin Levels in Healthy Male Volunteers

Author

Listed:
  • Su-Youn Cho

    (Exercise Physiology Laboratory, Department of Physical Education, Yonsei University, Seoul 03722, Korea)

  • Young-Soo Chung

    (Department of Sports and Leisure Studies, School of Arts and Health, Myongji College, Seoul 03656, Korea)

  • Hyoung-Ki Yoon

    (School of Sports, College of Humanities, Soongsil University, Seoul 06978, Korea)

  • Hee-Tae Roh

    (Department of Sports Science, College of Health Science, Sun Moon University, 70 Sunmoon-ro 221 beongil, Tangjeong-myeon, Asan-si 31460, Korea)

Abstract

Exercise can induce anti-inflammatory and antioxidant effects, for which regulation of sirtuins (SIRTs) may be a major consideration for exercise prescription. The purpose of this study was to investigate the effects of acute aerobic exercise, in particular its intensity, on systemic oxidative stress, inflammatory responses, and SIRT levels. Twenty healthy, untrained males were recruited and randomly assigned to moderate-intensity (MI, 65% VO 2 max, n = 10) and high-intensity (HI, 85% VO 2 max, n = 10) exercise. Blood samples were obtained pre-, immediately post-, and 1 h post-exercise for measurements of malonaldehyde (MDA), superoxide dis-mutase (SOD), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, SIRT-1, SIRT-2, and SIRT-3. Overall, MDA, SOD, IL-6, SIRT-1, and SIRT-3 levels were significantly increased at post-exercise compared with pre-exercise regardless of exercise intensity ( p < 0.05). The HI group had significantly higher MDA, SOD, and IL-6 levels than the MI group at post-exercise ( p < 0.05), whereas no significant differences were observed in the IL-1β, TNF-α, and SIRT-2 levels ( p > 0.05). Altogether, these findings suggest that exercise-induced oxidative stress and inflammatory responses may be dependent on exercise intensity. Moreover, activation of inflammatory cytokines and SIRT family members may be dependent on the intensity of the exercise.

Suggested Citation

  • Su-Youn Cho & Young-Soo Chung & Hyoung-Ki Yoon & Hee-Tae Roh, 2022. "Impact of Exercise Intensity on Systemic Oxidative Stress, Inflammatory Responses, and Sirtuin Levels in Healthy Male Volunteers," IJERPH, MDPI, vol. 19(18), pages 1-9, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11292-:d:909796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11292/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11292/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carles Cantó & Zachary Gerhart-Hines & Jerome N. Feige & Marie Lagouge & Lilia Noriega & Jill C. Milne & Peter J. Elliott & Pere Puigserver & Johan Auwerx, 2009. "AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity," Nature, Nature, vol. 458(7241), pages 1056-1060, April.
    2. Hee-Tae Roh & Su-Youn Cho & Wi-Young So, 2020. "Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents," IJERPH, MDPI, vol. 17(7), pages 1-11, April.
    3. Wajdi Souissi & Mohamed Amine Bouzid & Mohamed Amine Farjallah & Lobna Ben Mahmoud & Mariem Boudaya & Florian A. Engel & Zouheir Sahnoun, 2020. "Effect of Different Running Exercise Modalities on Post-Exercise Oxidative Stress Markers in Trained Athletes," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurore Claude-Taupin & Pierre Isnard & Alessia Bagattin & Nicolas Kuperwasser & Federica Roccio & Biagina Ruscica & Nicolas Goudin & Meriem Garfa-Traoré & Alice Regnier & Lisa Turinsky & Martine Burti, 2023. "The AMPK-Sirtuin 1-YAP axis is regulated by fluid flow intensity and controls autophagy flux in kidney epithelial cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Jia Luo & Changfa Tang & Xiaobin Chen & Zhanbing Ren & Honglin Qu & Rong Chen & Zhen Tong, 2020. "Impacts of Aerobic Exercise on Depression-Like Behaviors in Chronic Unpredictable Mild Stress Mice and Related Factors in the AMPK/PGC-1α Pathway," IJERPH, MDPI, vol. 17(6), pages 1-12, March.
    3. Éverton Lopes Vogt & Maiza Cristina Von Dentz & Débora Santos Rocha & Jorge Felipe Argenta Model & Lucas Stahlhöfer Kowalewski & Samir Khal de Souza & Vitória de Oliveira Girelli & Paulo Ivo Homem de , 2021. "Metabolic and Molecular Subacute Effects of a Single Moderate-Intensity Exercise Bout, Performed in the Fasted State, in Obese Male Rats," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    4. Andrea Brizzolari & Gerardo Bosco & Alessandra Vezzoli & Cinzia Dellanoce & Alessandra Barassi & Matteo Paganini & Danilo Cialoni & Simona Mrakic-Sposta, 2023. "Seasonal Oxy-Inflammation and Hydration Status in Non-Elite Freeskiing Racer: A Pilot Study by Non-Invasive Analytic Method," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    5. Remigiusz Domin & Daniela Dadej & Michał Pytka & Ariadna Zybek-Kocik & Marek Ruchała & Przemysław Guzik, 2021. "Effect of Various Exercise Regimens on Selected Exercise-Induced Cytokines in Healthy People," IJERPH, MDPI, vol. 18(3), pages 1-36, January.
    6. Yi-Fang Cheng & Guang-Huar Young & Jiun-Tsai Lin & Hyun-Hwa Jang & Chin-Chen Chen & Jing-Yi Nong & Po-Ku Chen & Cheng-Yi Kuo & Shao-Hsuan Kao & Yao-Jen Liang & Han-Min Chen, 2015. "Activation of AMP-Activated Protein Kinase by Adenine Alleviates TNF-Alpha-Induced Inflammation in Human Umbilical Vein Endothelial Cells," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-14, November.
    7. Yuanpei Li & Xiaoniu He & Xiao Lu & Zhicheng Gong & Qing Li & Lei Zhang & Ronghui Yang & Chengyi Wu & Jialiang Huang & Jiancheng Ding & Yaohui He & Wen Liu & Ceshi Chen & Bin Cao & Dawang Zhou & Yufen, 2022. "METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    8. Nadège Zanou & Haikel Dridi & Steven Reiken & Tanes Imamura de Lima & Chris Donnelly & Umberto De Marchi & Manuele Ferrini & Jeremy Vidal & Leah Sittenfeld & Jerome N. Feige & Pablo M. Garcia-Roves & , 2021. "Acute RyR1 Ca2+ leak enhances NADH-linked mitochondrial respiratory capacity," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    9. Weiwei Liu & Hao Zhou & Han Wang & Quanri Zhang & Renliang Zhang & Belinda Willard & Caini Liu & Zizhen Kang & Xiao Li & Xiaoxia Li, 2022. "IL-1R-IRAKM-Slc25a1 signaling axis reprograms lipogenesis in adipocytes to promote diet-induced obesity in mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Yong-Kuk Lee & Su-Youn Cho & Hee-Tae Roh, 2021. "Effects of 16 Weeks of Taekwondo Training on the Cerebral Blood Flow Velocity, Circulating Neurotransmitters, and Subjective Well-Being of Obese Postmenopausal Women," IJERPH, MDPI, vol. 18(20), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11292-:d:909796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.