IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i12p6987-d833432.html
   My bibliography  Save this article

Knowledge Mapping of the Phytoremediation of Cadmium-Contaminated Soil: A Bibliometric Analysis from 1994 to 2021

Author

Listed:
  • Xiaofeng Zhao

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Mei Lei

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Runyao Gu

    (College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China)

Abstract

Cadmium pollution of soil threatens the environmental quality and human health. Phytoremediation of cadmium-contaminated soil has attracted global attention in recent decades. This study aimed to conduct a comprehensive and systematic review of the literature on phytoremediation of cadmium-contaminated soil based on bibliometric analysis. A total of 5494 articles published between 1994 and 2021 were retrieved from the Web of Science Core Collection. Our knowledge mapping presented the authors, journals, countries, institutions, and other basic information to understand the development status of phytoremediation of cadmium-contaminated soil. Based on a keyword cluster analysis, the identified major research domains were “biochar”, “ Thlaspi caerulescens ”, “endophytic bacteria”, “oxidative stress”, “EDTA”, and “bioconcentration factor”. Overall, this study provided a detailed summary of research trends and hotspots. Based on the keyword co-occurrence and burst analysis, the core concepts and basic theories of this field were completed in 2011. However, the pace of theoretical development has been relatively slow. Finally, future research trends/frontiers were proposed, such as biochar addition, rhizosphere bacterial community manipulation, cadmium subcellular distribution, and health risk assessment.

Suggested Citation

  • Xiaofeng Zhao & Mei Lei & Runyao Gu, 2022. "Knowledge Mapping of the Phytoremediation of Cadmium-Contaminated Soil: A Bibliometric Analysis from 1994 to 2021," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:6987-:d:833432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/12/6987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/12/6987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    3. Qing Ping & Jiangen He & Chaomei Chen, 2017. "How many ways to use CiteSpace? A study of user interactive events over 14 months," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(5), pages 1234-1256, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    2. Francisco Díez-Martín & Giorgia Miotto & Cristina Del-Castillo-Feito, 2024. "The intellectual structure of gender equality research in the business economics literature," Review of Managerial Science, Springer, vol. 18(6), pages 1649-1680, June.
    3. Hyejin Park & Han Woo Park, 2018. "Two-side face of knowledge building using scientometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2815-2836, November.
    4. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    5. Jiaxing Jiang & Lin Fan, 2022. "Visualizing the Knowledge Domain of Language Experience: A Bibliometric Analysis," SAGE Open, , vol. 12(1), pages 21582440211, January.
    6. Hu, Wen & Li, Chun-hua & Ye, Chun & Wang, Ji & Wei, Wei-wei & Deng, Yong, 2019. "Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    7. Zhibin Peng & Omid Khatin-Zadeh, 2023. "Research on metaphor processing during the past five decades: a bibliometric analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    8. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    9. Rui Qiu & Shuhua Hou & Xin Chen & Zhiyi Meng, 2021. "Green aviation industry sustainable development towards an integrated support system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2441-2452, July.
    10. Mohammad Mahbub Alam & Maizatul Akmar Ismail, 2017. "RTRS: a recommender system for academic researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1325-1348, December.
    11. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.
    12. Cody Dunne & Ben Shneiderman & Robert Gove & Judith Klavans & Bonnie Dorr, 2012. "Rapid understanding of scientific paper collections: Integrating statistics, text analytics, and visualization," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2351-2369, December.
    13. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    14. Xue Xiao & Martin Skitmore & Heng Li & Bo Xia, 2019. "Mapping Knowledge in the Economic Areas of Green Building Using Scientometric Analysis," Energies, MDPI, vol. 12(15), pages 1-22, August.
    15. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    16. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    17. Mehdi Amirkhani & Igor Martek & Mark B. Luther, 2021. "Mapping Research Trends in Residential Construction Retrofitting: A Scientometric Literature Review," Energies, MDPI, vol. 14(19), pages 1-18, September.
    18. Ben Zhang & Chenxu Ming, 2023. "Digital Transformation and Open Innovation Planning of Response to COVID-19 Outbreak: A Systematic Literature Review and Future Research Agenda," IJERPH, MDPI, vol. 20(3), pages 1-26, February.
    19. Zongmin Li & Shuyan Xu & Liming Yao, 2018. "A Systematic Literature Mining of Sponge City: Trends, Foci and Challenges Standing Ahead," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    20. Boyack, Kevin W. & Klavans, Richard, 2014. "Including cited non-source items in a large-scale map of science: What difference does it make?," Journal of Informetrics, Elsevier, vol. 8(3), pages 569-580.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:6987-:d:833432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.