IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i11p6836-d830940.html
   My bibliography  Save this article

Sensitivity and Specificity of Rapid SARS-CoV-2 Antigen Detection Using Different Sampling Methods: A Clinical Unicentral Study

Author

Listed:
  • Faisal Alonaizan

    (Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia)

  • Jehan AlHumaid

    (Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia)

  • Reem AlJindan

    (Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia)

  • Sumit Bedi

    (Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia)

  • Heba Dardas

    (Emergency Department, King Fahad University Hospital, Al Khobar 34445, Saudi Arabia)

  • Dalia Abdulfattah

    (Clinical Nursing Supervisor Operating Room, King Fahad University Hospital, Al Khobar 34445, Saudi Arabia)

  • Hanadi Ashour

    (College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia)

  • Mohammed AlShahrani

    (Department of Emergency Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia)

  • Omar Omar

    (Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia)

Abstract

Rapid antigen detection of SARS-CoV-2 has been widely used. However, there is no consensus on the best sampling method. This study aimed to determine the level of agreement between SARS-CoV-2 fluorescent detection and a real-time reverse-transcriptase polymerase chain reaction (rRT-PCR), using different swab methods. Fifty COVID-19 and twenty-six healthy patients were confirmed via rRT-PCR, and each patient was sampled via four swab methods: oropharyngeal (O), nasal (N), spit saliva (S), and combined O/N/S swabs. Each swab was analyzed using an immunofluorescent Quidel system. The combined O/N/S swab provided the highest sensitivity (86%; Kappa = 0.8), followed by nasal (76%; Kappa = 0.68), whereas the saliva revealed the lowest sensitivity (66%; kappa = 0.57). Further, when considering positive detection in any of the O, N, and S samples, excellent agreements with rRT-PCR were achieved (Kappa = 0.91 and 0.97, respectively). Finally, among multiple factors, only patient age revealed a significant negative association with antigenic detection in the saliva. It is concluded that immunofluorescent detection of SARS-CoV-2 antigen is a reliable method for rapid diagnosis under circumstances where at least two swabs, one nasal and one oropharyngeal, are analyzed. Alternatively, a single combined O/N/S swab would improve the sensitivity in contrast to each site swabbed alone.

Suggested Citation

  • Faisal Alonaizan & Jehan AlHumaid & Reem AlJindan & Sumit Bedi & Heba Dardas & Dalia Abdulfattah & Hanadi Ashour & Mohammed AlShahrani & Omar Omar, 2022. "Sensitivity and Specificity of Rapid SARS-CoV-2 Antigen Detection Using Different Sampling Methods: A Clinical Unicentral Study," IJERPH, MDPI, vol. 19(11), pages 1-10, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6836-:d:830940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/11/6836/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/11/6836/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 588(7836), pages 6-6, December.
    2. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 579(7798), pages 270-273, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahadat Uddin & Arif Khan & Haohui Lu & Fangyu Zhou & Shakir Karim, 2022. "Suburban Road Networks to Explore COVID-19 Vulnerability and Severity," IJERPH, MDPI, vol. 19(4), pages 1-9, February.
    2. Kirsten R.C. Hensgens & Inge H.T. van Rensen & Anita W. Lekx & Frits H.M. van Osch & Lieve H.H. Knarren & Caroline E. Wyers & Joop P. van den Bergh & Dennis G. Barten, 2021. "Sort and Sieve: Pre-Triage Screening of Patients with Suspected COVID-19 in the Emergency Department," IJERPH, MDPI, vol. 18(17), pages 1-11, September.
    3. Quan-Hoang Vuong & Tam-Tri Le & Viet-Phuong La & Huyen Thanh Thanh Nguyen & Manh-Toan Ho & Quy Khuc & Minh-Hoang Nguyen, 2022. "Covid-19 vaccines production and societal immunization under the serendipity-mindsponge-3D knowledge management theory and conceptual framework," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    4. Hengrui Liu & Sho Iketani & Arie Zask & Nisha Khanizeman & Eva Bednarova & Farhad Forouhar & Brandon Fowler & Seo Jung Hong & Hiroshi Mohri & Manoj S. Nair & Yaoxing Huang & Nicholas E. S. Tay & Sumin, 2022. "Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Graziella Orrù & Ciro Conversano & Eleonora Malloggi & Francesca Francesconi & Rebecca Ciacchini & Angelo Gemignani, 2020. "Neurological Complications of COVID-19 and Possible Neuroinvasion Pathways: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    6. Gleidson Sobreira Leite & Adriano Bessa Albuquerque & Plácido Rogerio Pinheiro, 2021. "Applications of Technological Solutions in Primary Ways of Preventing Transmission of Respiratory Infectious Diseases—A Systematic Literature Review," IJERPH, MDPI, vol. 18(20), pages 1-50, October.
    7. Britton Boras & Rhys M. Jones & Brandon J. Anson & Dan Arenson & Lisa Aschenbrenner & Malina A. Bakowski & Nathan Beutler & Joseph Binder & Emily Chen & Heather Eng & Holly Hammond & Jennifer Hammond , 2021. "Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    8. Yongzhu Xiong & Yunpeng Wang & Feng Chen & Mingyong Zhu, 2020. "Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China," IJERPH, MDPI, vol. 17(11), pages 1-26, May.
    9. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    10. Fabiana Fiasca & Mauro Minelli & Dominga Maio & Martina Minelli & Ilaria Vergallo & Stefano Necozione & Antonella Mattei, 2020. "Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO 2 : A Nationwide Observational Study in Italy," IJERPH, MDPI, vol. 17(24), pages 1-10, December.
    11. Małgorzata Dudzińska & Marta Gwiaździńska-Goraj & Aleksandra Jezierska-Thöle, 2022. "Social Factors as Major Determinants of Rural Development Variation for Predicting Epidemic Vulnerability: A Lesson for the Future," IJERPH, MDPI, vol. 19(21), pages 1-24, October.
    12. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Xu, Baochang & Li, Sihui & Afzal, Ayesha & Mirza, Nawazish & Zhang, Meng, 2022. "The impact of financial development on environmental sustainability: A European perspective," Resources Policy, Elsevier, vol. 78(C).
    15. Leili Mohammadi & Ahmad Mehravaran & Zahra Derakhshan & Ehsan Gharehchahi & Elza Bontempi & Mohammad Golaki & Razieh Khaksefidi & Mohadeseh Motamed-Jahromi & Mahsa Keshtkar & Amin Mohammadpour & Hamid, 2022. "Investigating the Role of Environmental Factors on the Survival, Stability, and Transmission of SARS-CoV-2, and Their Contribution to COVID-19 Outbreak: A Review," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    16. Jing Wang & Yuan-fei Pan & Li-fen Yang & Wei-hong Yang & Kexin Lv & Chu-ming Luo & Juan Wang & Guo-peng Kuang & Wei-chen Wu & Qin-yu Gou & Gen-yang Xin & Bo Li & Huan-le Luo & Shoudeng Chen & Yue-long, 2023. "Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Nur Hannani Bi Rahman & Shazmin Shareena A. Azis & Ibrahim Sipan, 2021. "COVID-19: Standard Operating Procedure Improvement For Green Office Building Using Indoor Environmental Quality," LARES lares-2021-4dqg, Latin American Real Estate Society (LARES).
    18. Ho‐fung Hung, 2022. "The Virus, the Dollar, and the Global Order: The COVID‐19 Crisis in Comparative Perspective," Development and Change, International Institute of Social Studies, vol. 53(6), pages 1177-1199, November.
    19. Eduardo Gutiérrez-Abejón & Eduardo Tamayo & Débora Martín-García & F. Javier Álvarez & Francisco Herrera-Gómez, 2020. "Clinical Profile, Treatment and Predictors during the First COVID-19 Wave: A Population-Based Registry Analysis from Castile and Leon Hospitals," IJERPH, MDPI, vol. 17(24), pages 1-15, December.
    20. Bo Qin & Ziheng Li & Kaiming Tang & Tongyun Wang & Yubin Xie & Sylvain Aumonier & Meitian Wang & Shuofeng Yuan & Sheng Cui, 2023. "Identification of the SARS-unique domain of SARS-CoV-2 as an antiviral target," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6836-:d:830940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.