IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i23p9049-d456832.html
   My bibliography  Save this article

Consumption of a Beverage Containing Aspartame and Acesulfame K for Two Weeks Does Not Adversely Influence Glucose Metabolism in Adult Males and Females: A Randomized Crossover Study

Author

Listed:
  • Yoona Kim

    (Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea)

  • Jennifer B. Keogh

    (UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia)

  • Peter M. Clifton

    (UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia)

Abstract

There is an association between the consumption of artificial sweeteners and Type 2 diabetes in cohort studies, but intervention studies do not show a clear elevation of blood glucose after the use of artificial sweeteners. The objective of this study was to examine whether two commonly used artificial sweeteners had an adverse effect on glucose control in normal-weight subjects, and in overweight and obese subjects when consumed for 2 weeks. In the study, 39 healthy subjects (body-mass index, kg/m 2 ) (18–45) without Type 2 diabetes with an age of 18–75 years were randomly assigned to 0.6 L/day of an artificially sweetened soft drink containing acesulfame K (950) and aspartame (951) or 0.6 L/day of mineral water for 2 weeks each in a crossover study. There was a 4 week washout period with no drinks consumed. Glucose levels were read by a continuous glucose monitor (CGM) during each 2 week period. A 75 g oral glucose-tolerance test (OGTT) was performed at the beginning and end of each intervention period. Blood samples were collected at baseline, and 1 and 2 h for glucose and insulin. A 2 week intake of artificially sweetened beverage (ASB) did not alter concentrations of fasting glucose and fasting insulin, the area under the curve (AUC) for OGTT glucose and insulin, the incremental area under the curve (iAUC) for OGTT glucose and insulin, the homeostatic model assessment for insulin resistance (HOMA-IR), and the Matsuda index compared with the baseline and with the changes after a 2 week intake of mineral water. Continuous 2 week glucose concentrations were not significantly different after a 2 week intake of ASB compared with a 2 week intake of mineral water. This study found no harmful effect of the artificially sweetened soft drink containing acesulfame K (950) and aspartame (951) on glucose control when consumed for 2 weeks by people without Type 2 diabetes.

Suggested Citation

  • Yoona Kim & Jennifer B. Keogh & Peter M. Clifton, 2020. "Consumption of a Beverage Containing Aspartame and Acesulfame K for Two Weeks Does Not Adversely Influence Glucose Metabolism in Adult Males and Females: A Randomized Crossover Study," IJERPH, MDPI, vol. 17(23), pages 1-9, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:23:p:9049-:d:456832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/23/9049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/23/9049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lawrence A. David & Corinne F. Maurice & Rachel N. Carmody & David B. Gootenberg & Julie E. Button & Benjamin E. Wolfe & Alisha V. Ling & A. Sloan Devlin & Yug Varma & Michael A. Fischbach & Sudha B. , 2014. "Diet rapidly and reproducibly alters the human gut microbiome," Nature, Nature, vol. 505(7484), pages 559-563, January.
    2. Jotham Suez & Tal Korem & David Zeevi & Gili Zilberman-Schapira & Christoph A. Thaiss & Ori Maza & David Israeli & Niv Zmora & Shlomit Gilad & Adina Weinberger & Yael Kuperman & Alon Harmelin & Ilana , 2014. "Artificial sweeteners induce glucose intolerance by altering the gut microbiota," Nature, Nature, vol. 514(7521), pages 181-186, October.
    3. Qiao-Ping Wang & Duncan Browman & Herbert Herzog & G Gregory Neely, 2018. "Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lidy M Pelsser & Klaas Frankena & Jan Toorman & Rob Rodrigues Pereira, 2017. "Diet and ADHD, Reviewing the Evidence: A Systematic Review of Meta-Analyses of Double-Blind Placebo-Controlled Trials Evaluating the Efficacy of Diet Interventions on the Behavior of Children with ADH," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-25, January.
    2. Alexandria Turner & Martin Veysey & Simon Keely & Christopher J. Scarlett & Mark Lucock & Emma L. Beckett, 2020. "Intense Sweeteners, Taste Receptors and the Gut Microbiome: A Metabolic Health Perspective," IJERPH, MDPI, vol. 17(11), pages 1-18, June.
    3. Joe J. Lim & Christian Diener & James Wilson & Jacob J. Valenzuela & Nitin S. Baliga & Sean M. Gibbons, 2023. "Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Kenneth A. Wilson & Sudipta Bar & Eric B. Dammer & Enrique M. Carrera & Brian A. Hodge & Tyler A. U. Hilsabeck & Joanna Bons & George W. Brownridge & Jennifer N. Beck & Jacob Rose & Melia Granath-Pane, 2024. "OXR1 maintains the retromer to delay brain aging under dietary restriction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Iris Chen & Yogeshwar D Kelkar & Yu Gu & Jie Zhou & Xing Qiu & Hulin Wu, 2017. "High-dimensional linear state space models for dynamic microbial interaction networks," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-20, November.
    6. Joanna F Dipnall & Julie A Pasco & Michael Berk & Lana J Williams & Seetal Dodd & Felice N Jacka & Denny Meyer, 2016. "Into the Bowels of Depression: Unravelling Medical Symptoms Associated with Depression by Applying Machine-Learning Techniques to a Community Based Population Sample," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.
    7. Vinod Nikhra, 2019. "Therapeutic Potential of Gut Microbiome Manipulation: Concepts in Fecal Microbiota Transplantation," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 11(1), pages 1-9, June.
    8. Huimin Ye & Sabrina Borusak & Claudia Eberl & Julia Krasenbrink & Anna S. Weiss & Song-Can Chen & Buck T. Hanson & Bela Hausmann & Craig W. Herbold & Manuel Pristner & Benjamin Zwirzitz & Benedikt War, 2023. "Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Amanda H Pendegraft & Boyi Guo & Nengjun Yi, 2019. "Bayesian hierarchical negative binomial models for multivariable analyses with applications to human microbiome count data," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-23, August.
    10. Marijana Savin & Aleksandra Vrkatić & Danijela Dedić & Tomislav Vlaški & Ivana Vorgučin & Jelena Bjelanović & Marija Jevtic, 2022. "Additives in Children’s Nutrition—A Review of Current Events," IJERPH, MDPI, vol. 19(20), pages 1-18, October.
    11. Robin D Couch & Allyson Dailey & Fatima Zaidi & Karl Navarro & Christopher B Forsyth & Ece Mutlu & Phillip A Engen & Ali Keshavarzian, 2015. "Alcohol Induced Alterations to the Human Fecal VOC Metabolome," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    12. Mika Saarenpää & Marja I. Roslund & Riikka Puhakka & Mira Grönroos & Anirudra Parajuli & Nan Hui & Noora Nurminen & Olli H. Laitinen & Heikki Hyöty & Ondrej Cinek & Aki Sinkkonen & the ADELE Research , 2021. "Do Rural Second Homes Shape Commensal Microbiota of Urban Dwellers? A Pilot Study among Urban Elderly in Finland," IJERPH, MDPI, vol. 18(7), pages 1-19, April.
    13. Alice Risely & Kerstin Wilhelm & Tim Clutton-Brock & Marta B. Manser & Simone Sommer, 2021. "Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    14. Hania M. Taha & Alexander N. Slade & Betty Schwartz & Anna E. Arthur, 2022. "A Case–Control Study Examining the Association of Fiber, Fruit, and Vegetable Intake and the Risk of Colorectal Cancer in a Palestinian Population," IJERPH, MDPI, vol. 19(12), pages 1-11, June.
    15. Sarah L Hagerty & Kent E Hutchison & Christopher A Lowry & Angela D Bryan, 2020. "An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    16. Patrick A. Jonge & Koen Wortelboer & Torsten P. M. Scheithauer & Bert-Jan H. Born & Aeilko H. Zwinderman & Franklin L. Nobrega & Bas E. Dutilh & Max Nieuwdorp & Hilde Herrema, 2022. "Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Yun Han Kwon & Suhrid Banskota & Huaqing Wang & Laura Rossi & Jensine A. Grondin & Saad A. Syed & Yeganeh Yousefi & Jonathan D. Schertzer & Katherine M. Morrison & Michael G. Wade & Alison C. Holloway, 2022. "Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Lharbi Dridi & Fernando Altamura & Emmanuel Gonzalez & Olivia Lui & Ryszard Kubinski & Reilly Pidgeon & Adrian Montagut & Jasmine Chong & Jianguo Xia & Corinne F. Maurice & Bastien Castagner, 2023. "Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Muntsa Rocafort & David B. Gootenberg & Jesús M. Luévano & Jeffrey M. Paer & Matthew R. Hayward & Juliet T. Bramante & Musie S. Ghebremichael & Jiawu Xu & Zoe H. Rogers & Alexander R. Munoz & Samson O, 2024. "HIV-associated gut microbial alterations are dependent on host and geographic context," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Louzada, Maria Laura da Costa & Levy, Renata Bertazzi & Martins, Ana Paula Bortoletto & Claro, Rafael Moreira & Steele, Euridice Martinez & Verly Jr., Eliseu & Cafiero, Carlo & Monteiro, Carlos August, 2017. "Validating the usage of household food acquisition surveys to assess the consumption of ultra-processed foods: Evidence from Brazil," Food Policy, Elsevier, vol. 72(C), pages 112-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:23:p:9049-:d:456832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.