IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i20p7660-d432030.html
   My bibliography  Save this article

Vulnerability Analysis to Drought Based on Remote Sensing Indexes

Author

Listed:
  • Huicong Jia

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, China
    Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Beijing 100094, China)

  • Fang Chen

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Beijing 100094, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jing Zhang

    (Department of Geography, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, China)

  • Enyu Du

    (College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

A vulnerability curve is an important tool for the rapid assessment of drought losses, and it can provide a scientific basis for drought risk prevention and post-disaster relief. Those populations with difficulty in accessing drinking water because of drought (hereon “drought at risk populations”, abbreviated as DRP) were selected as the target of the analysis, which examined factors contributing to their risk status. Here, after the standardization of disaster data from the middle and lower reaches of the Yangtze River in 2013, the parameter estimation method was used to determine the probability distribution of drought perturbations data. The results showed that, at the significant level of α = 0.05, the DRP followed the Weibull distribution, whose parameters were optimal. According to the statistical characteristics of the probability density function and cumulative distribution function, the bulk of the standardized DRP is concentrated in the range of 0 to 0.2, with a cumulative probability of about 75%, of which 17% is the cumulative probability from 0.2 to 0.4, and that greater than 0.4 amounts to only 8%. From the perspective of the vulnerability curve, when the variance ratio of the normalized vegetation index (NDVI) is between 0.65 and 0.85, the DRP will increase at a faster rate; when it is greater than 0.85, the growth rate of DRP will be relatively slow, and the disaster losses will stabilize. When the variance ratio of the enhanced vegetation index (EVI) is between 0.5 and 0.85, the growth rate of DRP accelerates, but when it is greater than 0.85, the disaster losses tend to stabilize. By comparing the coefficient of determination (R 2 ) values fitted for the vulnerability curve, in the same situation, EVI is more suitable to indicate drought vulnerability than NDVI for estimating the DRP.

Suggested Citation

  • Huicong Jia & Fang Chen & Jing Zhang & Enyu Du, 2020. "Vulnerability Analysis to Drought Based on Remote Sensing Indexes," IJERPH, MDPI, vol. 17(20), pages 1-20, October.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:20:p:7660-:d:432030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/20/7660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/20/7660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donald Wilhite & Mark Svoboda & Michael Hayes, 2007. "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 763-774, May.
    2. Huicong Jia & Donghua Pan & Jing-ai Wang & Wan-chang Zhang, 2016. "Risk mapping of integrated natural disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2023-2035, February.
    3. Hongjian Zhou & Jing’ai Wang & Jinhong Wan & Huicong Jia, 2010. "Resilience to natural hazards: a geographic perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 21-41, April.
    4. Huicong Jia & Donghua Pan & Jing-ai Wang & Wan-chang Zhang, 2016. "Risk mapping of integrated natural disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2023-2035, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weixiao Han & Chen Liang & Baofa Jiang & Wei Ma & Ying Zhang, 2016. "Major Natural Disasters in China, 1985–2014: Occurrence and Damages," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    2. Huicong Jia & Donghua Pan, 2017. "Tornado disaster impacts and management: learning from the 2016 tornado catastrophe in Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 457-471, October.
    3. Feng Kong & Shao Sun, 2021. "Better Understanding Insurance Mechanism in Dealing with Climate Change Risk, with Special Reference to China," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    4. Ximeng Xu & Qiuhong Tang, 2021. "Meteorological disaster frequency at prefecture-level city scale and induced losses in mainland China during 2011–2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 827-844, October.
    5. Qian Gong & Yushan Duan & Fengtao Guo, 2021. "Disaster Risk Reduction Education in School Geography Curriculum: Review and Outlook from a Perspective of China," Sustainability, MDPI, vol. 13(7), pages 1-16, April.
    6. Jelena M. Andrić & Da-Gang Lu, 2017. "Fuzzy probabilistic seismic hazard analysis with applications to Kunming city, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1031-1057, December.
    7. Fang Chen & Huicong Jia & Enyu Du & Lei Wang & Ning Wang & Aqiang Yang, 2021. "Spatiotemporal Variations and Risk Analysis of Chinese Typhoon Disasters," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    8. Yu Peng & Jingyi Song & Tiantian Cui & Xiang Cheng, 2017. "Temporal–spatial variability of atmospheric and hydrological natural disasters during recent 500 years in Inner Mongolia, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 441-456, October.
    9. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    10. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    11. Yuejuan Yang & Kun Wang & Di Liu & Xinquan Zhao & Jiangwen Fan & Jinsheng Li & Xiajie Zhai & Cong Zhang & Ruyi Zhan, 2019. "Spatiotemporal Variation Characteristics of Ecosystem Service Losses in the Agro-Pastoral Ecotone of Northern China," IJERPH, MDPI, vol. 16(7), pages 1-23, April.
    12. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    13. Jones, Lindsey & d'Errico, Marco, 2019. "Whose resilience matters? Like-for-like comparison of objective and subjective evaluations of resilience," World Development, Elsevier, vol. 124(C), pages 1-1.
    14. L. Vergni & F. Todisco & B. Lena, 2021. "Evaluation of the similarity between drought indices by correlation analysis and Cohen's Kappa test in a Mediterranean area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2187-2209, September.
    15. Araceli Martin-Candilejo & Francisco J. Martin-Carrasco & Ana Iglesias & Luis Garrote, 2023. "Heading into the Unknown? Exploring Sustainable Drought Management in the Mediterranean Region," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    16. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    17. Wen-Ko Hsu & Wei-Ling Chiang & Qiang Xue & Dung-Mou Hung & Pei-Chun Huang & Cheng-Wu Chen & Chung-Hung Tsai, 2013. "A probabilistic approach for earthquake risk assessment based on an engineering insurance portfolio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1559-1571, February.
    18. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    19. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    20. Yusuke Toyoda, 2021. "Survey paper: achievements and perspectives of community resilience approaches to societal systems," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 705-756, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:20:p:7660-:d:432030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.